Skip to main content

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 1126 Accesses

Abstract

While the natural hosts for bacteriophages are bacteria, there is growing evidence for the ability of phage to interact with mammalian cells, particularly with those of the human immune system. These interactions typically encompass two main features: (i) phage immunogenicity, or ability of phages to induce specific immune responses; and (ii) phage immunomodulation, which can be defined as the ability of phages to modify the immune system in both innate and adaptive responses. The aim of this chapter is to explore the interactions between phages and the immune system, and more specifically the implications of these interactions in the development of novel medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S. T., & Thomas-Abedon, C. (2010). Phage therapy pharmacology. Current Pharmaceutical Biotechnology, 11(1), 28–47.

    Article  CAS  Google Scholar 

  • Acton, R. T., & Evans, E. E. (1968). Bacteriophage clearance in the (Crassostrea virginica). Journal of Bacteriology, 95(4), 1260–1266.

    CAS  Google Scholar 

  • Adams, G. P., Schier, R., McCall, A. M., Simmons, H. H., Horak, E. M., Alpaugh, R. K., … Weiner, L. M. (2001). High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Research, 61(12), 4750–4755.

    Google Scholar 

  • Barry, M. A., Dower, W. J., & Johnston, S. A. (1996). Toward cell–targeting gene therapy vectors: Selection of cell–binding peptides from random peptide–presenting phage libraries. Nature Medicine, 2(3), 299–305.

    Article  CAS  Google Scholar 

  • Bartsch, H., & Nair, J. (2006). Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Archives of Surgery/ Deutsche Gesellschaft Für Chirurgie, 391(5), 499–510.

    Article  Google Scholar 

  • Bazan, J., CaÅ‚kosiÅ„ski, I., & Gamian, A. (2012). Phage display—A powerful technique for immunotherapy. Human Vaccines and Immunotherapeutics, 8, 1829–1835.

    Article  CAS  Google Scholar 

  • Bedi, D., Gillespie, J. W., & Petrenko, V. A. (2014). Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Engineering, Design and Selection, 27(7), 235–243.

    Article  CAS  Google Scholar 

  • Bloch, H. (1940). Experimental investigation of the relationship between bacteriophage and malignant tumors. Arch Gesamte Virusforsch, 1, 481–496.

    Article  Google Scholar 

  • Cardó-Vila, M., Zurita, A. J., Giordano, R. J., Sun, J., Rangel, R., Guzman-Rojas, L., … Pasqualini, R. (2008). A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11. PloS One, 3(10), e3452.

    Google Scholar 

  • Carrera, M. R. A., Kaufmann, G. F., Mee, J. M., Meijler, M. M., Koob, G. F., Janda, K. D. (2004). Treating cocaine addiction with viruses. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10416–10421. doi: 10.1073/pnas.0403795101

    Google Scholar 

  • Chen, X., Scala, G., Quinto, I., Liu, W., Chun, T. W., Justement, J. S., … Fauci, a S. (2001). Protection of rhesus macaques against disease progression from pathogenic SHIV-89.6PD by vaccination with phage-displayed HIV-1 epitopes. Nature Medicine, 7(11), 1225–1231.

    Google Scholar 

  • Clark, J. R., Bartley, K., Jepson, C. D., Craik, V., & March, J. B. (2011). Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunology and Medical Microbiology, 61(2), 197–204.

    Article  CAS  Google Scholar 

  • Clark, J. R., & March, J. B. (2004). Bacteriophage-mediated nucleic acid immunisation. FEMS Immunology and Medical Microbiology, 40, 21–26.

    Article  CAS  Google Scholar 

  • Clark, J. R., & March, J. B. (2006). Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends in Biotechnology, 24(5), 212–218.

    Article  CAS  Google Scholar 

  • Dabrowska, K., Opolski, A., Wietrzyk, J., Switala-Jelen, K., Boratynski, J., Nasulewicz, A., … Gorski, A. (2004a). Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway. Acta Virologica, 48(4), 241–248.

    Google Scholar 

  • Dabrowska, K., Opolski, A., Wietrzyk, J., Switala-Jelen, K., Godlewska, J., Boratynski, J., … Gorski, A. (2004b). Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumor models. Anticancer Research, 24(6), 3991–3995.

    Google Scholar 

  • Dabrowska, K., SwitaÅ‚a-Jelen, K., Opolski, A., Weber-Dabrowska, B., & Gorski, A. (2005). Bacteriophage penetration in vertebrates. Journal of Applied Microbiology, 98(1), 7–13.

    Article  CAS  Google Scholar 

  • Delmastro, P., Meola, A., Monaci, P., Cortese, R., & Galfrè, G. (1997). Immunogenicity of filamentous phage displaying peptide mimotopes after oral administration. Vaccine, 15(11), 1276–1285.

    Article  CAS  Google Scholar 

  • DePorter, S. M., & McNaughton, B. R. (2014). Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjugate Chemistry, 25(9), 1620–1625.

    Article  CAS  Google Scholar 

  • Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 269(14), 10444–10450.

    CAS  Google Scholar 

  • Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 271(30), 18188–18193.

    Article  CAS  Google Scholar 

  • Dickerson, T. J., Kaufmann, G. F., & Janda, K. D. (2005). Bacteriophage-mediated protein delivery into the central nervous system and its application in immunopharmacotherapy. Expert Opinion on Biological Therapy, 5(6), 773–781.

    Article  CAS  Google Scholar 

  • Eriksson, F., Culp, W. D., Massey, R., Egevad, L., Garland, D., Persson, M. A. A., et al. (2007). Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunology, Immunotherapy, 56(5), 677–687.

    Article  Google Scholar 

  • Eriksson, F., Tsagozis, P., Lundberg, K., Parsa, R., Mangsbo, S. M., Persson, M. A. A., … Pisa, P. (2009). Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. Journal of Immunology, 182(5), 3105–3111.

    Google Scholar 

  • Fagbohun, O. A, Kazmierczak, R. A, Petrenko, V. A, & Eisenstark, A. (2013). Metastatic prostate cancer cell-specific phage-like particles as a targeted gene-delivery system. Journal of Nanobiotechnology, 11(1), 31. http://doi.org/10.1186/1477-3155-11-31

    Google Scholar 

  • Fang, J., Wang, G., Yang, Q., Song, J., Wang, Y., & Wang, L. (2005). The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model. Vaccine, 23(40), 4860–4866.

    Article  CAS  Google Scholar 

  • Fearon, D. T., & Locksley, R. M. (1996). The instructive role of innate immunity in the acquired immune response. Science, 272(5258), 50–54.

    Article  CAS  Google Scholar 

  • Frenkel, D., Katz, O., & Solomon, B. (2000). Immunization against Alzheimer’s beta-amyloid plaques via EFRH phage administration. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11455–11459.

    Article  CAS  Google Scholar 

  • Geier, M. R., Trigg, M. E., & Merril, C. R. (1973). Fate of bacteriophage lambda in non-immune germ-free mice. Nature, 246(5430), 221–223.

    Article  CAS  Google Scholar 

  • Górski, A., Kniotek, M., Perkowska-PtasiÅ„ska, A., Mróz, A., Przerwa, A., Gorczyca, W., … Nowaczyk, M. (2005). Bacteriophages and transplantation tolerance. Transplantation Proceedings, 38(1), 331–333.

    Google Scholar 

  • Grabowska, A. M., Jennings, R., Laing, P., Darsley, M., Jameson, C. L., & Swift, L., et al. (2000). Immunisation with phage displaying peptides representing single epitopes of the glycoprotein G can give rise to partial protective immunity to HSV-2. Virology, 269(0042-6822 (Print)), 47–53.

    Google Scholar 

  • Gross, A. L., Gillespie, J. W., & Petrenko, V. A. (2016). Promiscuous tumor targeting phage proteins. Protein Engineering Design and Selection, 1–11.

    Google Scholar 

  • Halpern, B. N. (1959). The Role and function of the reticulo-endothelial system in immunological processes. King’s College Publication, 321–338.

    Google Scholar 

  • Hamzeh-Mivehroud, M., Alizadeh, A. A., Morris, M. B., Church, W. B., & Dastmalchi, S. (2013). Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discovery Today, 18(23–24), 1144–1157.

    Article  CAS  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  CAS  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  Google Scholar 

  • Hashiguchi, S., Yamaguchi, Y., Takeuchi, O., Akira, S., & Sugimura, K. (2010). Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signaling. Biochemical and Biophysical Research Communications, 402(1), 19–22.

    Article  CAS  Google Scholar 

  • Henry, K. A., Arbabi-Ghahroudi, M., & Scott, J. K. (2015). Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Frontiers in Microbiology, 6, 755.

    Google Scholar 

  • Inchley, C. J. (1969). The activity of mouse Kupffer cells following intravenous injection of T4 bacteriophage. Clinical and Experimental Immunology, 5, 173–187.

    CAS  Google Scholar 

  • Ivanenkov, V. V., Felici, F., & Menon, A. G. (1999). Uptake and intracellular fate of phage display vectors in mammalian cells. Biochimica et Biophysica Acta, 1448, 450–462.

    Article  CAS  Google Scholar 

  • Jain, R. K. (1990). Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Research, 50(3 SUPPL.), 814–819.

    Google Scholar 

  • Jayanna, P. K., Bedi, D., Deinnocentes, P., Bird, R. C., & Petrenko, V. A. (2010a). Landscape phage ligands for PC3 prostate carcinoma cells. Protein Engineering, Design and Selection, 23(6), 423–430.

    Article  CAS  Google Scholar 

  • Jayanna, P. K., Bedi, D., Gillespie, J. W., DeInnocentes, P., Wang, T., Torchilin, V. P., … Petrenko, V. A. (2010b). Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine: Nanotechnology, Biology and Medicine, 6(4), 538–546.

    Google Scholar 

  • Jayanna, P. K., Torchilin, V. P., & Petrenko, V. A. (2009). Liposomes targeted by fusion phage proteins. Nanomedicine: Nanotechnology, Biology and Medicine, 5(1), 83–89.

    CAS  Google Scholar 

  • JoÅ„czyk, E., KÅ‚ak, M., MiÄ™dzybrodzki, R., & Górski, A. (2011). The influence of external factors on bacteriophages–review. Folia Microbiologica, 56(3), 191–200.

    Article  Google Scholar 

  • Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S., Moghoofei, M., & Hamblin, M. R. (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Advanced Drug Delivery Reviews.

    Google Scholar 

  • Kassner, P. D., Burg, M. A., Baird, A., & Larocca, D. (1999). Genetic selection of phage engineered for receptor-mediated gene transfer to mammalian cells. Biochemical and Biophysical Research Communications, 264(3), 921–928.

    Article  CAS  Google Scholar 

  • Kaur, T., Nafissi, N., Wasfi, O., Sheldon, K., Wettig, S., & Slavcev, R. (2012). Immunocompatibility of bacteriophages as nanomedicines. Journal of Nanotechnology.

    Google Scholar 

  • Kim, Y., Caberoy, N. B., Alvarado, G., Davis, J. L., Feuer, W. J., & Li, W. (2011). Identification of Hnrph3 as an autoantigen for acute anterior uveitis. Clinical Immunology (Orlando, Fla.), 138(1), 60–66.

    Google Scholar 

  • Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., & Arap, W. (2004). Reversal of obesity by targeted ablation of adipose tissue. Nature Medicine, 10(6), 625–632.

    Article  CAS  Google Scholar 

  • Ladner, R. C., Sato, A. K., Gorzelany, J., & de Souza, M. (2004). Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today, 9(12), 525–529.

    Article  CAS  Google Scholar 

  • Larocca, D., Jensen-Pergakes, K., Burg, M. A., & Baird, A. (2001). Receptor-targeted gene delivery using multivalent phagemid particles. Molecular Therapy, 3(4), 476–484.

    Article  CAS  Google Scholar 

  • Lewis, V. O., Ozawa, M. G., Deavers, M. T., Wang, G., Shintani, T., Arap, W., et al. (2009). The interleukin-11 receptor alpha as a candidate ligand-directed target in osteosarcoma: Consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Research, 69(5), 1995–1999.

    Article  CAS  Google Scholar 

  • Lopez, V., Ochs, H. D., Thuline, H. C., Davis, S. D., & Wedgwood, R. J. (1975). Defective antibody response to bacteriophage ØX 174 in down syndrome. The Journal of Pediatrics, 86(2), 207–211.

    Article  CAS  Google Scholar 

  • Luken, B. M., Kaijen, P. H. P., Turenhout, E. A. M., Kremer Hovinga, J. A., van Mourik, J. A., Fijnheer, R., et al. (2006). Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/thrombospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis: JTH, 4(11), 2355–2364.

    Article  CAS  Google Scholar 

  • March, J. B., Clark, J. R., & Jepson, C. D. (2004). Genetic immunisation against hepatitis B using whole bacteriophage λ particles. Vaccine, 22, 1666–1671.

    Article  CAS  Google Scholar 

  • Merril, C. R., Biswas, B., Carltont, R., Jensen, N. C., Creed, G. J., Zullo, S., et al. (1996). Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences, 93, 3188–3192.

    Article  CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. FASEB Journal, 19(3), 311–330.

    Article  CAS  Google Scholar 

  • Molek, P., Strukelj, B., & Bratkovic, T. (2011). Peptide phage display as a tool for drug discovery: Targeting membrane receptors. Molecules (Basel, Switzerland), 16(1), 857–87.

    Google Scholar 

  • Molenaar, T. J. M., Michon, I., de Haas, S. A. M., van Berkel, T. J. C., Kuiper, J., & Biessen, E. A. L. (2002). Uptake and processing of modified bacteriophage M13 in mice: Implications for phage display. Virology, 293(1), 182–191.

    Article  CAS  Google Scholar 

  • Mount, J. D., Samoylova, T. I., Morrison, N. E., Cox, N. R., Baker, H. J., & Petrenko, V. A. (2004). Cell targeted phagemid rescued by preselected landscape phage. Gene, 341, 59–65.

    Article  CAS  Google Scholar 

  • Newton, J. R., Kelly, K. A., Mahmood, U., Weissleder, R., & Deutscher, S. L. (2006). In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia, 8(9), 772–780.

    Article  CAS  Google Scholar 

  • Niu, Z., Bruckman, M. A., Harp, B., Mello, C. M., & Wang, Q. (2008). Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Research, 1(3), 235–241.

    Article  CAS  Google Scholar 

  • Ochs, H. D., Davis, S. D., & Wedgwood, R. J. (1971). Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. The Journal of Clinical Investigation, 50(12), 2559–2568.

    Article  CAS  Google Scholar 

  • Olszowska-Zaremba, N., Borysowski, J., Dabrowska, K., & Gorski, A. (2012a). Phage translocation, safety and immunomodulation. In Bacteriophages in health and disease (pp. 168–184). Cambridge, MA: Advances in Molecular and Cellular Microbiology.

    Google Scholar 

  • Olszowska-Zaremba, N., Borysowski, J., Dabrowska, K., Górski, A., Hyman, P., & Abedon, S. T. (2012b). Phage translocation, safety and immunomodulation. In P. Hyman & S. T. Abedon (Eds.), Bacteriophages in health and disease (pp. 168–184). Wallingford: CABI.

    Chapter  Google Scholar 

  • Pasqualini, R., Millikan, R. E., Christianson, D. R., Cardó-Vila, M., Driessen, W. H. P., Giordano, R. J., … Arap, W. (2015). Targeting the interleukin-11 receptor α in metastatic prostate cancer: A first-in-man study. Cancer, 121(14), 2411–2421.

    Google Scholar 

  • Petrenko, V. A., & Jayanna, P. K. (2014). Phage protein-targeted cancer nanomedicines. FEBS Letters, 588(2), 341–349.

    Article  CAS  Google Scholar 

  • Poul, M. A., Becerril, B., Nielsen, U. B., Morisson, P., & Marks, J. D. (2000). Selection of tumor-specific internalizing human antibodies from phage libraries. Journal of Molecular Biology, 301(5), 1149–1161.

    Article  CAS  Google Scholar 

  • Poul, M. A., & Marks, J. D. (1999). Targeted gene delivery to mammalian cells by filamentous bacteriophage. Journal of Molecular Biology, 288(2), 203–211.

    Article  CAS  Google Scholar 

  • Rangel, R., Dobroff, A. S., Guzman-Rojas, L., Salmeron, C. C., Gelovani, J. G., Sidman, R. L., … Arap, W. (2013). Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nature Protocols, 8(10), 1916–1939.

    Google Scholar 

  • Rangel, R., Guzman-Rojas, L., le Roux, L. G., Staquicini, F. I., Hosoya, H., Barbu, E. M., … Arap, W. (2012). Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nature Communications, 3, 788.

    Google Scholar 

  • Rao, A. J., Ramachandra, S. G., Ramesh, V., Couture, L., Abdennebi, L., Salesse, R., et al. (2004). Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor. Reproductive BioMedicine Online, 8(4), 385–391.

    Article  CAS  Google Scholar 

  • Rishi, P., Singh, A. P., Arora, S., Garg, N., & Kaur, I. P. (2014). Revisiting eukaryotic anti-infective biotherapeutics. Critical Reviews in Microbiology, 40(4), 281–292.

    Article  CAS  Google Scholar 

  • Roehnisch, T., Then, C., Nagel, W., Blumenthal, C., Braciak, T., Donzeau, M., … Oduncu, F. (2013). Chemically linked phage idiotype vaccination in the murine B cell lymphoma 1 model. Journal of Translational Medicine, 11(1), 267.

    Google Scholar 

  • Roehnisch, T., Then, C., Nagel, W., Blumenthal, C., Braciak, T., Donzeau, M., … Oduncu, F. S. (2014). Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma. Journal of Translational Medicine, 12(1), 119. http://doi.org/10.1186/1479-5876-12-119

    Google Scholar 

  • Rosenberg, S. A. (1999). A new era of cancer immunotherapy: Converting theory to performance. CA: A Cancer Journal for Clinicians, 49, 70–73.

    CAS  Google Scholar 

  • Samoylov, A., Cochran, A., Schemera, B., Kutzler, M., Donovan, C., Petrenko, V., … Samoylova, T. (2015). Humoral immune responses against gonadotropin releasing hormone elicited by immunization with phage-peptide constructs obtained via phage display. Journal of Biotechnology, 216, 20–28.

    Google Scholar 

  • Samoylova, T. I., Petrenko, V. A., Morrison, N. E., Globa, L. P., Baker, H. J., & Cox, N. R. (2003). Phage probes for malignant glial cells. Molecular Cancer Therapeutics, 2(16), 1129–1137.

    CAS  Google Scholar 

  • Sblattero, D., Berti, I., Trevisiol, C., Marzari, R., Bradbury, A., Not, T., … Ventura, A. (1999). Human tissue transglutaminase ELISA: a powerful mass screening diagnostic assay for celiac disease. Journal of Pediatric Gastroenterology and Nutrition, 28(5), 568.

    Google Scholar 

  • Smith, G. P., & Petrenko, V. A. (1997). Phage display. Chemical Reviews, 2665(96), 391–410.

    Article  Google Scholar 

  • Sokoloff, A. V., Bock, I., Zhang, G., Sebestyén, M. G., & Wolff, J. A. (2000). The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Molecular Therapy, 2(2), 131–139.

    Article  CAS  Google Scholar 

  • Srivastava, A. S., Kaido, T., & Carrier, E. (2004). Immunological factors that affect the in vivo fate of T7 phage in the mouse. Journal of Virological Methods, 115(1), 99–104.

    Article  CAS  Google Scholar 

  • Strebhardt, K., & Ullrich, A. (2008). Paul Ehrlich’s magic bullet concept: 100 years of progress. Nature Reviews Cancer, 8(6), 473–480.

    Article  CAS  Google Scholar 

  • Sulakvelidze, A. (2005). Phage therapy: An attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discovery Today, 10(12), 807–809.

    Article  Google Scholar 

  • Sulakvelidze, A., Alavidze, Z., & Glenn, J. M., Jr. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–659.

    Article  CAS  Google Scholar 

  • Trouche, S. G., Asuni, A., Rouland, S., Wisniewski, T., Frangione, B., Verdier, J. M., … Mestre-Francés, N. (2009). Antibody response and plasma Aβ1-40 levels in young Microcebus murinus primates immunized with Aβ1-42 and its derivatives. Vaccine, 27(7), 957–964.

    Google Scholar 

  • Ulivieri, C., Citro, A., Ivaldi, F., Mascolo, D., Ghittoni, R., Fanigliulo, D., … Del Pozzo, G. (2008). Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides. Immunology Letters, 119(1–2), 62–70.

    Google Scholar 

  • Urbanelli, L., Ronchini, C., Fontana, L., Menard, S., Orlandi, R., & Monaci, P. (2001). Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. Journal of Molecular Biology, 313, 965–976.

    Article  CAS  Google Scholar 

  • van Houten, N. E., Henry, K. A., Smith, G. P., & Scott, J. K. (2010). Engineering filamentous phage carriers to improve focusing of antibody responses against peptides. Vaccine, 28(10), 2174–2185.

    Article  Google Scholar 

  • van Houten, N. E., Zwick, M. B., Menendez, A., & Scott, J. K. (2006). Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine, 24(19), 4188–4200.

    Article  Google Scholar 

  • Wang, T., A. Petrenko, V., & Torchilin, V. P. (2011). Optimization of landscape phage fusion protein-modified polymeric Peg-Pe micelles for improved breast cancer cell targeting. Journal of Nanomedicine & Nanotechnology, s4(01), 008.

    Google Scholar 

  • Watanabe, K., Goodrich, J., Li, C., Agha, M., & Greenberg, P. (1992). Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science, 257(5067), 238–241.

    Article  Google Scholar 

  • Willis, A. E., Perham, R. N., & Wraith, D. (1993). Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene, 128(1), 79–83.

    Article  CAS  Google Scholar 

  • Wu, Y., Wan, Y., Bian, J., Zhao, J., Jia, Z., Zhou, L., … Tan, Y. (2002). Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model. International Journal of Cancer, 98(5), 748–753.

    Google Scholar 

  • Yang, W. J., Lai, J. F., Peng, K. C., Chiang, H. J., Weng, C. N., & Shiuan, D. (2005). Epitope mapping of Mycoplasma hyopneumoniae using phage displayed peptide libraries and the immune responses of the selected phagotopes. Journal of Immunological Methods, 304(1–2), 15–29.

    Article  CAS  Google Scholar 

  • Zuercher, A. W., Miescher, S. M., Vogel, M., Rudolf, M. P., Michael, B., & Stadler, B. M. (2004). Oral anti-IgE immunization with epitope-displaying phage. Veterinary Immunology and Immunopathology, 99, 11–24.

    Article  Google Scholar 

  • Zurita, A. J. (2004). Combinatorial screenings in patients: The interleukin-11 receptor as a candidate target in the progression of human prostate cancer. Cancer Research, 64(2), 435–439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Nicastro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Nicastro, J., Wong, S., Slavcev, R.A. (2016). Phage-Mediated Immunomodulation. In: Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-45791-8_7

Download citation

Publish with us

Policies and ethics