Skip to main content

Overview of Bacteriophage Lifecycles and Applications

  • Chapter
  • First Online:
Bacteriophage Applications - Historical Perspective and Future Potential

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 1346 Accesses

Abstract

Bacteriophages (phages) are well-established bacteria-specific viruses whose discovery is credited to the independent and nearly simultaneous works of Twort (1915) and d’Hérelle (1917) (Summers 1999) in the early 20th century. Each of the researchers characterized phages as the pathogens of bacteria following the hint of much phage-like phenomena from the 19th and 20th centuries. The late 1930s and early 1940s represented the most significant era for phage research and its impact on biological research (Abedon and Thomas-Abedon 2010), including the research by the “Phage Group”. This group included the work of Max Delbrück and other highly notable geneticists, including James Watson and Francis Crick (Abedon 2012a). The group quickly established that phage could be used for the treatment of bacterial infections, since called “phage therapy”, and were so named. “Bacteriophage” translates to “bacteria eaters”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S. T. (2012a). Phages. In P. Hyman & S. T. Abedon (Eds.), Bacteriophages in health and disease (pp. 1–5). London: Advances in Molecular and Cellular Microbiology.

    Google Scholar 

  • Abedon, S. T. (2012b). Phages. In S. T. Abedon & P. Hyman (Eds.), Bacteriophages in health and disease (pp. 1–6). London: Advances in Molecular and Cellular Microbiology.

    Google Scholar 

  • Abedon, S. T., & Thomas-Abedon, C. (2010). Phage therapy pharmacology. Current Pharmaceutical Biotechnology, 11(1), 28–47.

    Article  CAS  Google Scholar 

  • Ackermann, H. W. (2003). Bacteriophage observations and evolution. Research in Microbiology, 154, 245–251.

    Article  CAS  Google Scholar 

  • Ackermann, H. W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152, 227–243.

    Article  CAS  Google Scholar 

  • Aksyuk, A. A., & Rossmann, M. G. (2011). Bacteriophage assembly. Viruses, 3(3), 172–203.

    Article  CAS  Google Scholar 

  • Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471–477.

    Article  CAS  Google Scholar 

  • Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Bacteriophage-based synthetic biology for the study of infectious diseases. Current Opinion in Microbiology, 19C, 59–69.

    Article  Google Scholar 

  • d’Herelle, F. (1917). Sur un microbe invisible antagoniste des bacilles dysenteriques. Les Comptes Rendus del’Académie Des Sciences, 165, 373–375.

    Google Scholar 

  • Gaidelyte, A., Cvirkaite-Krupovic, V., Daugelavicius, R., Bamford, J. K. H., & Bamford, D. H. (2006). The entry mechanism of membrane-containing phage Bam35 infecting bacillus thuringiensis. Journal of Bacteriology, 188(16), 5925–5934.

    Article  CAS  Google Scholar 

  • Goodridge, L. D. (2010). Designing phage therapeutics. Current Pharmaceutical Biotechnology, 11(1), 15–27.

    Article  CAS  Google Scholar 

  • Górski, A., Kniotek, M., Perkowska-Ptasińska, A., Mróz, A., Przerwa, A., Gorczyca, W., Nowaczyk, M., et al. (2005). Bacteriophages and transplantation tolerance. Transplantation Proceedings, 38(1), 331–333.

    Google Scholar 

  • Hanlon, G. W. (2007). Bacteriophages: An appraisal of their role in the treatment of bacterial infections. International Journal of Antimicrobial Agents, 30(2), 118–128.

    Article  CAS  Google Scholar 

  • Henry, M., & Debarbieux, L. (2012). Tools from viruses: Bacteriophage successes and beyond. Virology, 434(2), 151–161.

    Article  CAS  Google Scholar 

  • Jiang, F., & Doudna, J. A. (2015). The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100–111.

    Google Scholar 

  • Kropinski, A. M. (2006). Phage therapy—Everything old is new again. Ammi Canada Annual Meeting Symposium, 17(5), 297–306.

    Google Scholar 

  • Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8(5), 317–327.

    Article  CAS  Google Scholar 

  • Lu, T. K., & Koeris, M. S. (2011). The next generation of bacteriophage therapy. Current Opinion in Microbiology, 14(5), 524–531. doi:10.1016/j.mib.2011.07.028

    Google Scholar 

  • Mardanov, A. V., & Ravin, N. V. (2007). The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. Journal of Bacteriology, 189(17), 6333–6338.

    Article  CAS  Google Scholar 

  • Mcnerney, R., Kambashi, B. S., Kinkese, J., Tembwe, R., & Godfrey-faussett, P. (2004). Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. Society, 42(5), 2115–2120.

    Google Scholar 

  • Merabishvili, M., Pirnay, J. P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Vaneechoutte, M., et al. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE, 4(3).

    Google Scholar 

  • Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S., et al. (1996). Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3188–3192.

    Article  CAS  Google Scholar 

  • Morita, M., Tanji, Y., Mizoguchi, K., Akitsu, T., Kijima, N., & Unno, H. (2002). Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiology Letters, 211(1), 77–83.

    Article  CAS  Google Scholar 

  • Olszowska-Zaremba, N., Borysowski, J., Dabrowska, K., Górski, A., Hyman, P., & Abedon, S. T. (2012). Phage translocation, safety and immunomodulation. In P. Hyman & S. T. Abedon (Eds.), Bacteriophages in health and disease (pp. 168–184).

    Google Scholar 

  • Randall-Hazelbauer, L., & Schwartz, M. (1973). Isolation of the bacteriophage lambda receptor from Escherichia coli. Journal of Bacteriology, 116(3), 1436–1446.

    CAS  Google Scholar 

  • Roberts, J. W., & Devoret, R. (1983). Lysogenic induction. In R. W. Hendrix, J. W. Roberts, F. W. Stahl, & R. A. Weisberg (Eds.), Lambda II (pp. 123–144). Cold Springs Harbor, New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Samson, J. E., Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages: Defeating bacterial defences. Nature Reviews Microbiology, 11(10), 675–687.

    Article  CAS  Google Scholar 

  • Strój, L., Weber-Dabrowska, B., Partyka, K., Mulczyk, M., & Wójcik, M. (1999). Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i Neurochirurgia Polska, 33(3), 693–698.

    Google Scholar 

  • Summers, W. C. (1999). Felix d’Herelle and the origins of molecular biology. Yale University Press.

    Google Scholar 

  • Summers, W. C. (2001). Bacteriophage therapy. Annal Review of Microbiology, 55, 437–451.

    Article  CAS  Google Scholar 

  • Tanji, Y., Shimada, T., Yoichi, M., Miyanaga, K., Hori, K., & Unno, H. (2004). Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Applied Microbiology and Biotechnology, 64(2), 270–274.

    Article  CAS  Google Scholar 

  • Twort, F. W. (1915, December 4). An investigation on the nature of ultra-microscopic viruses. The Lancet.

    Google Scholar 

  • Valyasevi, R., Sandine, W. E., & Geller, B. L. (1990). The bacteriophage KH receptor of Lactococcus lactis subsp. Cremoris KH is the rhamnose of the extracellular wall polysaccharide. Applied and Environmental Microbiology, 56(6), 1882–1889.

    CAS  Google Scholar 

  • Yacoby, I., & Benhar, I. (2008). Targeted filamentous bacteriophages as therapeutic agents. Expert opinion on drug delivery, 5(September), 321–329.

    Article  CAS  Google Scholar 

  • Young, R. (2014). Phage lysis: Three steps, three choices, one outcome. Journal of Microbiology, 52(3), 243–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Nicastro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Nicastro, J. (2016). Overview of Bacteriophage Lifecycles and Applications. In: Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-45791-8_1

Download citation

Publish with us

Policies and ethics