Skip to main content

Capacitive Charge-Based Transmitter

  • Chapter
  • First Online:
Charge-based CMOS Digital RF Transmitters

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 923 Accesses

Abstract

In light of all the potential noise and efficiency benefits discussed in Chap. 2, the first proof-of-concept charge-based transmitter implementation [Par15b, Par15a] is presented in this chapter. As it will be noted in the following paragraphs, this first implementation closely resembles the proposed watermill analogy, where the amount of power transferred to an output load is controlled by either increasing or decreasing the water level in a reservoir. Instead of buckets and valves however, switches and capacitors are used in this case to deliver controllable amounts of charge to a baseband capacitor. The motivations for choosing this first topology are manifold: First, an architecture exclusively based on switches and capacitors is inherently “digital friendly”, in the sense that it can be easily scaled and ported to different technologies following the typically dominant digital circuitry. Second, switches and capacitors are perhaps the only two components that benefit from scaling in advanced digital-oriented CMOS technologies. By making smaller transistors the intrinsic capacitances are reduced, allowing faster switching with less power consumption [Raz12]. The feature size reduction also provides larger capacitance densities, improving area efficiency with metal-oxide-metal (MOM) integrated capacitors. Third, and not less important, as further discussed in Sect. 3.2.3.2 the given topology also provides quantization noise scaling capabilities, relaxing the out-of-band noise emission. This chapter is divided into other four sections. Section 3.2 provides the architecture description with operating principles, followed by circuit implementation (Sect. 3.3) and layout considerations. Measurement results and conclusions are given in Sects. 3.4 and 3.5 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Alavi, M.S., Staszewski, R.B., de Vreede, L.C.N., Long, J.R.: A wideband 2x13-bit all-digital I/Q RF-DAC. IEEE Trans. Microwave Theory Tech. 62 (4), 732–752 (2014). ISSN: 0018-9480. doi:10.1109/TMTT.2014.2307876

    Google Scholar 

  2. Eloranta, P., Seppinen, P., Kallioinen, S., Saarela, T., Parssinen, A.: A multimode transmitter in 0.13 um CMOS using direct-digital RF modulator. IEEE J. Solid-State Circuits 42 (12), 2774–2784 (2007). ISSN: 0018-9200. doi:10.1109/JSSC.2007.908749

    Google Scholar 

  3. He, X., van Sinderen, J.: A low-power low-EVM, SAW-less WCDMA transmitter using direct quadrature voltage modulation. IEEE J. Solid-State Circuits 44 (12), 3448–3458 (2009). ISSN: 0018-9200. doi:10.1109/JSSC.2009.2032495

    Google Scholar 

  4. He, X., van Sinderen, J., Rutten, R.: A 45 nm WCDMA transmitter using direct quadrature voltage modulator with high oversampling digital front-end. In: 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 62–63. IEEE, Piscataway (2010). ISBN: 978-1-4244-6033-5. doi:10.1109/ISSCC.2010.5434048

    Google Scholar 

  5. Ingels, M., Furuta, Y., Zhang, X., Cha, S., Craninckx, J.: A multiband 40 nm CMOS LTE SAW-less modulator with − 60 dBc C-IM3. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 338–339. IEEE, Piscataway (2013). ISBN: 978-1-4673-4516-3. doi:10.1109/ISSCC.2013.6487760

    Google Scholar 

  6. Kundert, K.: Simulating switched-capacitor filters with SpectreRF. In: The Designer’s Guide Community, pp. 1–25 (2006); Electronic document accessed in Jan 2016 from www.designers-guide.org/analysis/sc-filters.pdf

  7. Lu, C., Wang, H., Peng, C.H., Goel, A., Son, S., Liang, P., Niknejad, A., Hwang, H.C., Chien, G.: A 24.7 dBm all-digital RF transmitter for multimode broadband applications in 40 nm CMOS. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 332–333. IEEE, Piscataway (2013). ISBN: 978-1-4673-4516-3. doi:10.1109/ISSCC.2013.6487757

    Google Scholar 

  8. Mehta, J., Staszewski, R.B., Eliezer, O., Rezeq, S., Waheed, K., Entezari, M., Feygin, G., Vemulapalli, S., Zoicas, V., Hung, C.-M., Barton, N., Bashir, I., Maggio, K., Frechette, M., Lee, M.-C., Wallberg, J., Cruise, P., Yanduru, N.: A 0.8 mm2 all-digital SAW-less polar transmitter in 65 nm EDGE SoC. In: 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 58–59. IEEE, Piscataway (2010). ISBN: 978-1-4244-6033-5. doi:10.1109/ISSCC.2010.5434050

    Google Scholar 

  9. Mirzaei, A., Murphy, D., Darabi, H.: Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers. IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (10), 2318–2331 (2011). ISSN: 1549-8328. doi:10.1109/TCSI.2011.2142790

    Google Scholar 

  10. Mirzaei, A., Darabi, H.: Analysis of imperfections on performance of 4-Phase passive-mixer-based high-Q bandpass filters in SAW-less receivers. IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (5), 879–892 (2011). ISSN: 1549-8328. doi:10.1109/TCSI.2010.2089555

    Google Scholar 

  11. Okada, K., Kousai, S.: Digitally-Assisted Analog and RF CMOS Circuit Design for Software-Defined Radio, edition published on 2011, Springer (2011)

    Google Scholar 

  12. Filho, P.E.P., Wambacq, M.I.P., Craninckx, J.: A transmitter with 10 b 128 MS/S incremental-charge-based DAC achieving − 155 dBc/Hz out-of-band noise. In: 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 164–165. IEEE, Piscataway (2015). ISBN: 978-1-4799-6223-5. doi:10.1109/ISSCC.2015.7062977

    Google Scholar 

  13. Filho, P.E.P., Ingels, M., Wambacq, P., Craninckx, J.: An incremental-charge-based digital transmitter with built-in filtering. IEEE J. Solid-State Circuits 50 (12), 3065–3076 (2015). ISSN: 0018-9200. doi:10.1109/JSSC.2015.2473680

    Google Scholar 

  14. Razavi, B.: Design of Analog CMOS Integrated Circuits, 1st edn. McGraw-Hill (2000)

    Google Scholar 

  15. Razavi, B.: RF Microelectronics, 2nd edn. Pearson Education International, Upper Saddle River (2012). ISBN: 9780132839419

    Google Scholar 

  16. Rossi, P., Codega, N., Gerna, D., Liscidini, A., Ottini, D., He, Y., Pirola, A., Sacchi, E., Uehara, G., Yang, C., Castello, R.: An LTE transmitter using a class-A/B power mixer. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 340–341. IEEE, Piscataway (2013). ISBN: 978-1-4673-4516-3. doi:10.1109/ISSCC.2013.6487761

    Google Scholar 

  17. Sowlati, T., Agarwal, B., Cho, J., Obkircher, T., El Said, M., Vasa, J., Ramachandran, B., Kahrizi, M., Dagher, E., Vadkerti, M., Taskov, G., Seckin, U., Firouzkouhi, H., Saeidi, B., Akyol, H., Mahjoob, A., D’Souza, S., Guss, D., Shum, D., Badillo, D., Ron, I., Ching, D., Komaili, J., Loke, A., Pullela, R., Pehlivanoglu, E., Zarei, H., Tadjpour, S., Agahi, D., Rozenblit, D., Domino, W., Williams, G., Damavandi, N., Wloczysiak, S., Rajendra, S., Paff, A., Valencia, T.: Single-chip multiband WCDMA/HSDPA/HSUPA/EGPRS transceiver with diversity receiver and 3G DigRF interface without SAW filters in transmitter / 3G receiver paths. In: 2009 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 116–117, 117a. IEEE, Piscataway (2009). ISBN: 978-1-4244-3458-9. doi:10.1109/ISSCC.2009.4977335

    Google Scholar 

  18. Van Den Bosch, A.: High resolution, high speed CMOS current-steering digital-to-analog converters. Ph.D. thesis (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paro Filho, P.E., Craninckx, J., Wambacq, P., Ingels, M. (2017). Capacitive Charge-Based Transmitter. In: Charge-based CMOS Digital RF Transmitters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-45787-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45787-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45786-4

  • Online ISBN: 978-3-319-45787-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics