Skip to main content

Solvers for the Coupled Linear Systems of Equations

  • Chapter
  • First Online:
Finite Element Methods for Incompressible Flow Problems

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 51))

Abstract

Remark 9.1 (Motivation) Many methods for the simulation of incompressible flow problems require the simulation of coupled linear problems for velocity and pressure of the form

$$\displaystyle{ \mathcal{A}\underline{x} = \left (\begin{array}{*{10}c} A& D\\ B &-C \end{array} \right )\left (\begin{array}{*{10}c} \underline{u}\\ \underline{p} \end{array} \right ) = \left (\begin{array}{*{10}c} \underline{f}\\ \underline{f_{ p}} \end{array} \right ) =\underline{ y}, }$$

with

$$\displaystyle\begin{array}{rcl} & & A \in \mathbb{R}^{dN_{v}\times dN_{v} },\ D \in \mathbb{R}^{dN_{v}\times N_{p} },\ B \in \mathbb{R}^{N_{p}\times dN_{v} },\ C \in \mathbb{R}^{N_{p}\times N_{p} }, {}\\ & & \underline{u},\underline{f} \in \mathbb{R}^{dN_{v} },\ \underline{p},\underline{f_{p}} \in \mathbb{R}^{N_{p} }, {}\\ \end{array}$$

such that

$$\displaystyle{\mathcal{A}\in \mathbb{R}^{(dN_{v}+N_{p})\times (dN_{v}+N_{p})},\quad \underline{x},\underline{y} \in \mathbb{R}^{dN_{v}+N_{p} }.}$$

If C = 0, then (9.1) is a linear saddle point problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23:15–41 (electronic)

    Google Scholar 

  • Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32:136–156

    Article  MathSciNet  Google Scholar 

  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc Web page. http://www.mcs.anl.gov/petsc

  • Benzi M, Olshanskii MA (2006) An augmented Lagrangian-based approach to the Oseen problem. SIAM J Sci Comput 28:2095–2113

    Article  MathSciNet  MATH  Google Scholar 

  • Benzi M, Wang Z (2011) Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations. SIAM J Sci Comput 33:2761–2784

    Article  MathSciNet  MATH  Google Scholar 

  • Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137

    Article  MathSciNet  MATH  Google Scholar 

  • Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. Society for industrial and applied mathematics (SIAM), Philadelphia, PA, pp xii+193

    Google Scholar 

  • Dahl O, Wille S (1992) An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier-Stokes equations. Int J Numer Methods Fluids 15:525–544

    Article  MATH  Google Scholar 

  • Davis TA (2004) Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30:196–199

    Article  MathSciNet  MATH  Google Scholar 

  • Elman HC, Tuminaro RS (2009) Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations. Electron Trans Numer Anal 35:257–280

    MathSciNet  MATH  Google Scholar 

  • Elman H, Howle VE, Shadid J, Shuttleworth R, Tuminaro R (2006) Block preconditioners based on approximate commutators. SIAM J Sci Comput 27:1651–1668

    Article  MathSciNet  MATH  Google Scholar 

  • Elman H, Howle VE, Shadid J, Silvester D, Tuminaro R (2008a) Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations. SIAM J Sci Comput 30:290–311

    Article  MathSciNet  MATH  Google Scholar 

  • Elman H, Howle VE, Shadid J, Shuttleworth R, Tuminaro R (2008b) A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J Comput Phys 227:1790–1808

    Article  MathSciNet  MATH  Google Scholar 

  • Elman HC, Silvester DJ, Wathen AJ (2014) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical mathematics and scientific computation, 2nd edn. Oxford University Press, Oxford, pp xiv+479

    Google Scholar 

  • Hackbusch W (1985) Multigrid methods and applications. Springer series in computational mathematics, vol 4. Springer, Berlin, pp xiv+377

    Google Scholar 

  • John V (2002) Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations. Int J Numer Methods Fluids 40:775–798

    Article  MathSciNet  MATH  Google Scholar 

  • John V (2006) On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder. Int J Numer Methods Fluids 50:845–862

    Article  MathSciNet  MATH  Google Scholar 

  • John V, Matthies G (2001) Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int J Numer Methods Fluids 37:885–903

    Article  MATH  Google Scholar 

  • John V, Tobiska L (2000) Numerical performance of smoothers in coupled multigrid methods for the parallel solution of the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 33:453–473

    Article  MATH  Google Scholar 

  • John V, Knobloch P, Matthies G, Tobiska L (2002) Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68:313–341

    Article  MathSciNet  MATH  Google Scholar 

  • Kay D, Loghin D, Wathen A (2002) A preconditioner for the steady-state Navier-Stokes equations. SIAM J Sci Comput 24:237–256

    Article  MathSciNet  MATH  Google Scholar 

  • Konshin IN, Olshanskii MA, Vassilevski YV (2015) ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations. SIAM J Sci Comput 37:A2171–A2197

    Article  MathSciNet  MATH  Google Scholar 

  • Olshanskii MA, Tyrtyshnikov EE (2014) Iterative methods for linear systems. Theory and applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, pp xvi+247

    Google Scholar 

  • Olshanskii MA, Vassilevski YV (2007) Pressure Schur complement preconditioners for the discrete Oseen problem. SIAM J Sci Comput 29:2686–2704

    Article  MathSciNet  MATH  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences. Hemisphere Publishing Corporation, Washington, New York, London/McGraw-Hill Book Company, New York, pp XIII+197

    Google Scholar 

  • Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14:461–469

    Article  MathSciNet  MATH  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, pp xviii+528

    Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  MATH  Google Scholar 

  • Schenk O, Bollhöfer M, Römer RA (2008) On large-scale diagonalization techniques for the anderson model of localization SIAM Rev 50:91–112

    Google Scholar 

  • Schieweck F (2000) A general transfer operator for arbitrary finite element spaces. Preprint 00-25. Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg

    Google Scholar 

  • Schönknecht N (2015) On solvers for saddle point problems arising in finite element discretizations of incompressible flow problems. Master thesis, Freie Universität Berlin

    Google Scholar 

  • Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J Sci Stat Comput 10:36–52

    Article  MathSciNet  MATH  Google Scholar 

  • Trilinos (2016) https://trilinos.org. Accessed 22 June 2016

  • Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid. Academic Press, Inc., San Diego, CA, pp xvi+631. With contributions by A. Brandt, P. Oswald and K. Stüben

    Google Scholar 

  • ur Rehman M, Vuik C, Segal G (2008) A comparison of preconditioners for incompressible Navier-Stokes solvers. Int J Numer Methods Fluids 57:1731–1751

    Google Scholar 

  • van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Statist Comput 13:631–644

    Article  MathSciNet  MATH  Google Scholar 

  • Vanka SP (1986) Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J Comput Phys 65:138–158

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

John, V. (2016). Solvers for the Coupled Linear Systems of Equations. In: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-45750-5_9

Download citation

Publish with us

Policies and ethics