Advertisement

PPOPM: More Efficient Privacy Preserving Outsourced Pattern Matching

  • Jun Zhou
  • Zhenfu CaoEmail author
  • Xiaolei DongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9878)

Abstract

Secure outsourced pattern matching permits both the sender and receiver with resource-constrained mobile devices to respectively delegate text T and pattern P to the cloud for the computationally-intensive task of pattern matching. Unfortunately, outsourcing both the computation and storage to the semi-trusted or malicious cloud has brought a series of security and privacy issues. Most of the state-of-the-art exploited the technique of computationally-intensive public key (fully) homomorphic encryption (FHE) as primitives which is inappropriate for resource-constrained devices and the work not depending on FHE cannot well guarantee either text privacy or pattern privacy. To well address this problem, a more efficient privacy preserving outsourced pattern matching PPOPM is proposed in this paper. As a building block, a privacy preserving outsourced discrete fourier transform protocol OFFT is firstly devised to allow the cloud perform OFFT in the encrypted domain, without disclosing either the coefficient privacy or the input privacy. Based on OFFT, we propose an efficient secure outsourced polynomial multiplication protocol OPMUL which is further exploited in designing the final efficient outsourced pattern matching protocol PPOPM. Without exploiting public key FHE, the proposed PPOPM achieves secure outsourced pattern matching with well protected text privacy and pattern privacy against the collusion between the cloud and the receiver or the sender, by performing any one-way trapdoor permutation only once. Finally, the universal composable (UC) technique is adopted to formally prove the security of our proposed PPOPM under the semi-honest environment. The extensive evaluations demonstrate the efficiency and practicability of our proposed PPOPM.

Keywords

Outsourced pattern matching Privacy preserving Discrete fourier transform Efficiency Universal composable security 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61373154, 61371083, 61411146001, 6163000206 and 6160060473, in part by the Prioritized Development Projects through the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant 20130073130004, in part by Shanghai High-tech field project under Grant 16511101400, and in part by Natural Science Foundation of Shanghai under Grant 16ZR1409200.

References

  1. 1.
    Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: ACM CCS (2011)Google Scholar
  5. 5.
    Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: ICALP (2013)Google Scholar
  6. 6.
    Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar
  7. 7.
    Zhou, J., Cao, Z., Dong, X., Lin, X., Vasilakos, A.V.: Securing m-healthcare social networks: challenges, countermeasures and future directions. IEEE Wirel. Commun. 20(4), 12–21 (2013)CrossRefGoogle Scholar
  8. 8.
    Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: ACM CCS 2007, pp. 519–528. ACM Press, New York (2007)Google Scholar
  9. 9.
    Zhou, J., Dong, X., Cao, Z., Vasilakos, A.V.: Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Trans. Inf. Forensics Secur. 10(6), 1299–1314 (2015)CrossRefGoogle Scholar
  10. 10.
    Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. J. Cryptology 23(3), 422–456 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Zhou, J., Cao, Z., Dong, X., Lin, X.: TR-MABE: white-box traceable and revocable multi-authority attribute-based encryption and its applications to multi-level privacy-preserving e-heathcare cloud computing systems. In: IEEE INFOCOM (2015)Google Scholar
  15. 15.
    Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 41–58. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Zhou, J., Lin, X., Dong, X., Cao, Z.: PSMPA: patient self-controllable and multi-level privacy-preserving cooperative authentication in distributed m-Healthcare cloud computing system. IEEE Trans. Parallel Distrib. Syst. 26(6), 1693–1703 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, D., Jia, X., Wang, C., Yang, K., Fu, S., Xu, M.: Generalized pattern matching string search on encrypted data in cloud systems. In: IEEE INFOCOM (2015)Google Scholar
  18. 18.
    Zhou, J., Cao, Z., Dong, X., Xiong, N., Vasilakos, A.V.: 4S: a secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Inf. Sci. 314, 255–276 (2015)CrossRefGoogle Scholar
  19. 19.
    Katz, J., Malka, L.: Secure text processing with applications to private DNA matching. In: ACM CCS (2010)Google Scholar
  20. 20.
    Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier transformation in the encrypted domain. IEEE Trans. Forensics Secur. 4(1), 86–97 (2009)CrossRefGoogle Scholar
  21. 21.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: CRYPTO (1998)Google Scholar
  22. 22.
  23. 23.
    Multiprecision integer and rational arithmetic c/c++ library. http://www.shamus.ie/
  24. 24.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Encryption, fully secure functional: attribute-based encryption and (Hierarchical) inner product encryption. In: EUROCRYPT (2010)Google Scholar
  26. 26.
    Wang, X., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-wide privacy-preserving similar patient query based on private edit distance. In: ACM CCS (2015)Google Scholar
  27. 27.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing Multi-Party Computation. IACR Cryptology ePrint Archive 2011, 272 (2011)Google Scholar
  28. 28.
    Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)Google Scholar
  29. 29.
    Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: ACM CCS (2012)Google Scholar
  30. 30.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Chung, K., Kalai, Y.T., Vadhan, S.P.: Improved delegation of computation using fully homomorphic encryption. In: CRYPO (2010)Google Scholar
  32. 32.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity class. In: EUROCRYPT (1999)Google Scholar
  34. 34.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, Q., Hu, S., Ren, K., He, M., Du, M., Wang, Z.: CloudBI: practical privacy-preserving outsourcing of biometric identification in the cloud. In: ESORICS (2015)Google Scholar
  36. 36.
    Cao, Z.: New trends of information security-how to change people’s life style? Sci. China Inf. Sci. 59(5), 050106:1–050106:3 (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Shanghai Key Lab for Trustworthy ComputingEast China Normal UniversityShanghaiChina

Personalised recommendations