Advertisement

Efficient Sanitizable Signatures Without Random Oracles

  • Russell W. F. Lai
  • Tao Zhang
  • Sherman S. M. ChowEmail author
  • Dominique Schröder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9878)

Abstract

Sanitizable signatures, introduced by Ateniese et al. (ESORICS ’05), allow the signer to delegate the sanitization right of signed messages. The sanitizer can modify the message and update the signature accordingly, so that the sanitized part of the message is kept private. For stronger protection of sensitive information, it is desirable that no one can link sanitized message-signature pairs of the same document. This idea was formalized by Brzuska et al. (PKC ’10) as unlinkability, which was followed up recently by Fleischhacker et al. (PKC ’16). Unfortunately, these generic constructions of sanitizable signatures, unlinkable or not, are based on building blocks with specially crafted features which efficient (standard model) instantiations are absent. Basing on existing primitives or a conceptually simple primitive is more desirable.

In this work, we present two such generic constructions, leading to efficient instantiations in the standard model. The first one is based on rerandomizable tagging, a new primitive which may find independent interests. It captures the core accountability mechanism of sanitizable signatures. The second one is based on accountable ring signatures (CARDIS ’04, ESORICS ’15). As an intermediate result, we propose the first accountable ring signature scheme in the standard model.

Keywords

Signature Scheme Generic Construction Random Oracle Random Oracle Model Pseudorandom Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the anonymous reviewers for their comments on our manuscript.

Sherman Chow is supported by the Early Career Award and the Early Career Scheme (CUHK 439713), and General Research Funds (CUHK 14201914) of the Research Grants Council, University Grant Committee of Hong Kong.

Dominique Schröder is supported by the German Federal Ministry of Education and Research (BMBF) through funding for the project PROMISE and by the German research foundation (DFG) through funding for the collaborative research center 1223.

References

  1. 1.
    Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous tags for traceable signatures. Int. J. Inf. Sec. 12(1), 19–31 (2013)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng, C.-M., et al. (eds.) PKC 2016. LNCS, vol. 9614, pp. 357–386. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_14 CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. J. Cryptology 25(1), 57–115 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39555-5_7 CrossRefGoogle Scholar
  7. 7.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., et al. (eds.) ESORICS. LNCS, vol. 9326, pp. 243–265. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24174-6_13 CrossRefGoogle Scholar
  8. 8.
    Bose, P., Das, D., Rangan, C.P.: Constant size ring signature without random oracle. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 230–247. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroMPI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Catalano, D.: Homomorphic signatures and message authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signatures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Zhang, F., Tian, H., Wei, B., Susilo, W., Mu, Y., Lee, H., Kim, K.: Efficient generic on-line/off-line (threshold) signatures without key exposure. Inf. Sci. 178(21), 4192–4203 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures and a black-box construction of strongly private schemes. In: Au, M.-H., et al. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26059-4_25 Google Scholar
  23. 23.
    Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., et al. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_12 CrossRefGoogle Scholar
  24. 24.
    Furukawa, J., Yonezawa, S.: Group signatures with separate and distributed authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 77–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000Google Scholar
  30. 30.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp. 271–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Russell W. F. Lai
    • 1
  • Tao Zhang
    • 1
  • Sherman S. M. Chow
    • 1
    Email author
  • Dominique Schröder
    • 2
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongSha Tin, N.T.Hong Kong
  2. 2.Chair for Applied CryptographyFriedrich-Alexander University Erlangen-NürnbergErlangen and NurembergGermany

Personalised recommendations