Skip to main content

Advanced Control Methods of DC/AC and AC/DC Power Converters—Look-Up Table and Predictive Algorithms

  • Chapter
  • First Online:
Advanced Control of Electrical Drives and Power Electronic Converters

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 75))

Abstract

This chapter is devoted to a modern look-up table and predictive control methods of three phase power electronic converters. The authors consider voltage source converters in two and three level configurations as well as a two level current source rectifier. Some of the methods concern DC/AC inverter fed induction and PMSM motors. The other methods described in this chapter are dedicated to the control of the AC/DC rectifier working as an Active Front End of an AC/DC/AC converter. The authors focus on the methods with a non-linear look-up table and predictive control due to their excellent dynamic properties (limited only by the physical parameters of controlled systems such as the value of the DC voltage, grid inductance or AC motor leakage inductance). Moreover, non-linear methods, especially the predictive ones, provide very good quality of control in steady states, i.e. lack of active and reactive power steady-state error (AC/DC) or torque error (in the case of DC/AC converters). Look-up table methods have been taken into consideration as they also ensure the above advantages in a relatively short calculation time. The selected look-up table and predictive methods are proposed for both 2-level and 3-level converters. All the described control methods have been illustrated by simulation results and laboratory tests confirming their characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSI:

Current source inverter

DPC:

Direct power control

DPC-3V:

Direct power control with 3-vectors modulation

DTC-3L-3A:

Direct torque control—3 level 3 areas

DTC-3V:

Direct torque control with 3-vectors modulation

DTC-SVM:

Direct torque control with space vector modulation

FCS-MPC:

Finite control set model predictive control

FOC:

Field oriented control

FS PPC:

Finite set predictive power control

ICS-MPC:

Infinite control set model predictive control

NPC Converter:

Neutral point clamped converter

PCi2uc :

Predictive current and capacitor voltage control

PCi-AD:

Predictive current control of an AC/DC inverter with active damping

PWM:

Pulse width modulation

SVM:

Space vector modulation

THD:

Total harmonic distortion

VOC:

Voltage oriented control

VSR:

Voltage source rectifier

References

  1. Ma K, Blaabjerg F (2014) Modulation methods for neutral-point-clamped wind power converter achieving loss and thermal redistribution under low-voltage ride-through. IEEE Trans Ind Electron 61(2):835–845

    Article  Google Scholar 

  2. Bae Y, Kim R-Y (2014) Suppression of common-mode voltage using a multicentral photovoltaic inverter topology with synchronized PWM. IEEE Trans Ind Electron 61(9):4722–4732

    Article  Google Scholar 

  3. Singaravel MR, Daniel SA (2015) MPPT with single DC–DC converter and inverter for grid-connected hybrid wind-driven PMSG–PV system. IEEE Trans Ind Electron 62(8):4849–4857

    Article  Google Scholar 

  4. Yaramasu V, Wu B (2014) Model predictive decoupled active and reactive power control for high-power grid-connected four-level diode-clamped inverters. IEEE Trans Ind Electron 61(7):3407–3416

    Article  Google Scholar 

  5. Holtz J (1992) Pulsewidth modulation—a survey. IEEE Trans Ind Electron 39(5):410–420

    Article  Google Scholar 

  6. Rodrriguez J, Dixon J, Espinoza J, Pont J, Lezana P (2005) PWM regenerative rectifiers: state of the art. IEEE Trans Ind Electron 52(1):5–22

    Article  Google Scholar 

  7. Jacob B, Baiju MR (2015) A new space vector modulation scheme for multilevel inverter which directly vector quantize the reference space vector. IEEE Trans Ind Electron 62(1):88–95

    Article  Google Scholar 

  8. Lim CS, Levi E, Jones M, Rahim NA, Hew WP (2014) FCS–MPC-based current control of a five-phase induction motor and its comparison with PI-PWM control. IEEE Trans Ind Electron 61(1):149–163

    Article  Google Scholar 

  9. Antoniewicz P, Kaźmierkowski MP (2008) Virtual-flux-based predictive direct power control of AC/DC converter with online inductance estimation. IEEE Trans Ind Electron 55(12):4381–4389

    Article  Google Scholar 

  10. Rodriguez J, Pontt JCA, Silva P, Correa P, Lezana P, Cortés P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE Trans Ind Electron 54(1):496–503

    Article  Google Scholar 

  11. Kennel R, Linder A (2005) Model predictive control for electrical drives. Paper presented at the power electronics specialist conference PESC’05, Recife, 16 June 2005

    Google Scholar 

  12. Cortez P, Rodriguez H, Antoniewicz P, Kazmierkowski M (2008) Direct power control of an AFE using predictive control. IEEE Trans Ind Electron 23(5):2516–2523

    Google Scholar 

  13. Cortez P, Rodriguez H (2012) Predictive control of power converters and electrical drives. Wiley, New York

    Google Scholar 

  14. Larrinaga SA, Vidal MA, Apraiz JRT, Oyarbide E (2007) Predictive control strategy for DC/AC converters based on direct power control. IEEE Trans Ind Electron 54(3):1261–1271

    Article  Google Scholar 

  15. Yin H, Dieckerhoff S (2015) Experimental comparison of DPC and VOC control of a three-level NPC grid connected converter. Paper presented at the IEEE international symposium on power electronics for distributed generation systems (PEDG), Aachen, 22–25 June 2015

    Google Scholar 

  16. Malinowski M, Kaźmierkowski MP, Jasiński M (2004) Simple direct power control of three-phase PWM rectifier using space vector modulation (DPC-SVM). IEEE Trans Ind Electron 51(2):447–454

    Article  Google Scholar 

  17. Zhi D, Xu L, Williams BW (2009) Improved direct power control of grid-connected DC/AC converters. IEEE Trans Power Electron 24(5):1280–1292

    Article  Google Scholar 

  18. Reznik A, Simoes MG, Al-Durra A, Muyeen SM (2014) LCL filter design and performance analysis for grid-interconnected systems. IEEE Trans Ind App 50(2):1225–1232

    Article  Google Scholar 

  19. Khajehoddin SA, Karimi-Ghartemani M, Jain PK, Bakhshai A (2011) A control design approach for three-phase grid-connected renewable energy resources. IEEE Trans Sustain Energy 2(4):423–432

    Article  Google Scholar 

  20. Jovcic D, Lu Z, Hajian M (2013) LCL VSC converter for high-power applications. IEEE Trans Power Deliv 28(1):137–144

    Article  Google Scholar 

  21. Sikorski A, Korzeniewski M (2013) Improved algorithms of direct torque control method. Automatika—J Control Meas Electron Comput Commun 53(2):188–198

    MATH  Google Scholar 

  22. Xia C, Zhao J, Yan Y, Shi T (2014) A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple. IEEE Trans Ind Electron 61(6):149–163

    Article  Google Scholar 

  23. Cortés P, Kazmierkowski MP, Kennel R, Quedo E, Rodriguez J (2008) Predictive control in power electronics and drives. IEEE Trans Ind Electron 55(12):4312–4324

    Article  Google Scholar 

  24. Rodriguez J, Wu B, Rivera M, Wilson A, Yaramasu V, Rojas C (2010) Model predictive control of three-phase four-leg neutral-point-clamped inverter. Paper presented at the international power electronics conference, IPEC 2010, Sapporo, 21–24 June 2010

    Google Scholar 

  25. Calle-Prado A, Alepuz S, Bordonau J, Nicolas-Apruzzese J, Cortés P, Rodriguez J (2015) Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements. IEEE Trans Ind Electron 62(3):1503–1514

    Article  Google Scholar 

  26. Choi D-K, Lee K-B (2015) Dynamic performance improvement of AC/DC converter using model predictive direct power control with finite control set. IEEE Trans Ind Electron 62(2):757–767

    Article  Google Scholar 

  27. Bouafia A, Gaubert J-P, Krim F (2010) Predictive power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans Power Electron 25(1):228–236

    Article  Google Scholar 

  28. Zhang Z, Xu H, Xue M, Chen Z, Sun T, Kennel R, Hackl CM (2015) Predictive control with novel virtual-flux estimation for back-to back power converters. IEEE Trans Ind Electron 62(5):2823–2834

    Article  Google Scholar 

  29. Alkorta P, Barambones O, Cortajarena JA, Zubizarrreta A (2014) Efficient multivariable generalized predictive control for sensorless induction motor drive. IEEE Trans Ind Electron 61(9):5126–5133

    Article  Google Scholar 

  30. Ren Y, Zhu ZQ (2015) Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Trans Ind Electron 62(6):3338–3350

    Google Scholar 

  31. Zhang YA, Xie W, Li ZC, Zhang Y (2013) Model predictive direct power control of a PWM rectifier with duty cycle optimization. IEEE Trans Power Electron 28(11):5343–5351

    Article  MathSciNet  Google Scholar 

  32. Ren Y, Zhu ZQ, Liu J (2014) Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator. IEEE Trans Ind Electron 61(10):5249–5258

    Article  Google Scholar 

  33. Restrepo JA, Aller JM, Viola JC, Bueno A, Habelter TG (2009) Optimum space vector computation technique for direct power control. IEEE Trans Power Electron 24(6):1637–1645

    Article  Google Scholar 

  34. Eskandari-Torbati H, Khaburi DA (2013) Direct power control of three-phase PWM rectifier using model predictive control and SVM switching. Paper presented at the 4th power electronics, drive systems and technologies conference, PEDSTC 2013, Tehran, 13–14 Feb 2013

    Google Scholar 

  35. Zhang Z, Xu H, Xue M, Chen Z, Sun T, Kennel R, Hackl CM (2015) Predictive control with novel virtual-flux estimation for back-to-back power converters. IEEE Trans Ind Electron 62(4):2823–2834

    Article  Google Scholar 

  36. Vazquez S, Marquez A, Aguilera R, Quevedo D, Leon JI, Franquelo LG (2015) Predictive optimal switching sequence direct power control for grid-connected power converters. IEEE Trans Ind Electron 62(4):2010–2020

    Article  Google Scholar 

  37. Blaschke F (1972) Das Verfahren der Feldorienterung zur Regelung der Asynchronmaschine. Siemens Forschungs und Entwicklungsberichte 1(1):184–193

    Google Scholar 

  38. Buja GS, Kazmierkowski MP (2004) Direct torque control of PWM inverter-fed AC motors-a survey. IEEE Trans Ind Electron 51(4):744–757

    Article  Google Scholar 

  39. Lai YS, Chen JH (2001) A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans Energy Convers 16(3):220–227

    Article  MathSciNet  Google Scholar 

  40. Lascu C, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans Ind Electron 53(1):785–792

    Article  Google Scholar 

  41. Takahashi I, Noguchi T (1986) A New quick-response and high-efficiency control strategy of an induction motor. IEEE Trans Ind App 22(5):820–827

    Article  Google Scholar 

  42. Papafotiou G, Kley J, Papadopoulos KG, Bohren P, Morari M (2009) Model predictive direct torque control—part II: implementation and experimental evaluation. IEEE Trans Ind Electron 56(6):1906–1915

    Article  Google Scholar 

  43. Wang F, Li S, Mei X, Xie W, Rodriguez J, Kennel RM (2015) Model-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods. IEEE Trans Ind Informatics 11(3):671–681

    Article  Google Scholar 

  44. Rodriguez J, Kazmierkowski MP, Espionza JR, Zanchetta P, Abu-Rub H, Young HA, Rojas CA (2013) State of the art of finite control set model predictive control in power electronics. IEEE Trans Ind Informatics 9(2):1003–1016

    Article  Google Scholar 

  45. Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press, Chichester

    Book  Google Scholar 

  46. Kang JK, Sul SK (2004) Analysis and prediction of inverter switching in direct torque control of induction machine based on hysteresis bands and machine parameters. IEEE Trans Ind Electron 48(3):545–553

    Article  Google Scholar 

  47. Idris NRN, Yatim AHM (2004) Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans Ind Electron 51(4):758–767

    Article  Google Scholar 

  48. Lascu C, Boldea I, Blaabjerg F (2004) Variable-structure direct torque control—a class of fast and robust controllers for induction machine drives. IEEE Trans Ind Electron 51(4):785–792

    Article  Google Scholar 

  49. Lai YS, Wang WK, Chen YC (2004) A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans Ind Electron 51(4):768–775

    Article  Google Scholar 

  50. Ambrozic V, Buja GS, Menis R (2004) Band-constrained technique for direct torque control of induction motor. IEEE Trans Ind Electron 51(4):776–784

    Article  Google Scholar 

  51. Noguchi T, Yamamoto M, Kondo S, Takahashi I (1999) Enlarging switching frequency in direct torque-controlled inverter by means of dithering. IEEE Trans Ind App 35(6):1358–1366

    Article  Google Scholar 

  52. Habetler TG, Profumo F, Pastorelli M, Tolbert LM (1992) Direct torque control of induction machines using space vector modulation. IEEE Trans Ind App 28(5):1045–1053

    Article  Google Scholar 

  53. Bertoluzzo M, Buja G, Menis R (2006) Direct torque control of an induction motor using a single current sensor. IEEE Trans Ind Electron 53(3):778–784

    Article  Google Scholar 

  54. Beerten J, Verveckken J, Driesen J (2009) Predictive direct torque control for flux and torque ripple reduction. IEEE Trans Ind Electron 57(1):404–412

    Article  Google Scholar 

  55. Miranda H, Cortés P, Yuz J, Rodríguez J (2009) Predictive torque control of induction machines based on state space models. IEEE Trans Ind Electron 56(6):1916–1924

    Article  Google Scholar 

  56. Geyer T, Papafotiou G, Morari M (2009) Model predictive direct torque control—part I: concept, algorithm and analysis. IEEE Trans Ind Electron 56(6):1894–1905

    Article  Google Scholar 

  57. Papafotiou G, Geyer T, Morari M (2009) Model predictive direct torque control—part II: implementation and experimental evaluation. IEEE Trans Ind Electron 56(6):1906–1915

    Article  Google Scholar 

  58. Casadei D, Serra G, Tani A (2000) Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation. IEEE Trans Power Electron 15(4):769–777

    Article  Google Scholar 

  59. Rodriguez J, Lai J-S, Peng FZ (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans Ind Electron 49(4):724–739

    Article  Google Scholar 

  60. Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580

    Article  Google Scholar 

  61. Lee J-S, Lee K-B (2015) Open-switch fault tolerance control for a three-level NPC/T-type rectifier in wind turbine systems. IEEE Trans Ind Electron 62(2):1012–1020

    Article  Google Scholar 

  62. Chaturvedi P, Jain S, Agarwal P (2014) Carrier-based neutral point potential regulator reduced switching losses for three-level diode-clamped inverter. IEEE Trans Ind Electron 61(2):613–624

    Article  Google Scholar 

  63. Rivera S, Wu B, Kouro S, Yaramasu V, Wang J (2015) Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus. IEEE Trans Ind Electron 62(4):1999–2009

    Article  Google Scholar 

  64. Busquets-Monge S, Maheshwari R, Nicolas-Apruzzese J, Lupon E, Munk-Nielsen S, Bordonau J (2014) Enhanced DC-link capacitor voltage balancing control of DC–AC multilevel multileg converters. IEEE Trans Ind Electron 62(5):4722–4732

    Google Scholar 

  65. Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596

    Article  Google Scholar 

  66. Hartman MT (2005) Space vectors sets of voltage multilevel inverter part 1. Classic two-levels, NPC and DCI circuit topologies. Paper presented at IEEE compatibility in power electronics, Gdynia, Poland, 1 June 2005

    Google Scholar 

  67. Teichmann R, Malinowski M, Bernet S (2005) Evaluation of three-level rectifiers for low-voltage utility applications. IEEE Trans Ind Electron 52(2):471–482

    Article  Google Scholar 

  68. Alemi P, Dong-Choon L (2011) Power loss comparison in two- and three-level PWM converters. Paper presented at the IEEE international conference on power electronics and ECCE, Jeju, 30 May–3 June 2011

    Google Scholar 

  69. Razali AM, Rahman MA, George G, Rahim NA (2015) Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC–DC converter. IEEE Trans Ind App 51(2):1189–1200

    Article  Google Scholar 

  70. Zhang Y, Qu C (2015) Table-based direct power control for three-phase AC/DC converters under unbalanced grid voltages. IEEE Trans Power Electron 30(12):7090–7099

    Article  MathSciNet  Google Scholar 

  71. Cuzner R, Drews D, Venkataramanan G (2012) Power density and efficiency of system compatible, sine-wave input/output drives. Paper presented at the IEEE energy conversion conference and exposition (ECCE), Raleigh, 15–20 Sept 2012

    Google Scholar 

  72. Fukuda S, Hasegawa H (1988) Current source rectifier/inverter system with sinusoidal currents. Conference record of the 1988 IEEE industry applications society annual meeting, Pittsburgh, 2–7 Oct 1988

    Google Scholar 

  73. Espinoza JR, Joos G (1998) State variable decoupling and power flow control in PWM current-source rectifiers. IEEE Trans Ind Electron 45(1):78–87

    Article  Google Scholar 

  74. Liu F, Wu B, Zargari NR, Pande M (2011) Inductor current feedback control based active damping for high power PWM current source rectifier. Paper presented at the IEEE international electric machines and drives conference (IEMDC), Niagara Falls, 15–18 May 2011

    Google Scholar 

  75. Li YW, Wu B, Zargari NR, Wiseman JC, Xu D (2007) Damping of PWM current-source rectifier using a hybrid combination approach. IEEE Trans on Power Electron 22(4):1383–1393

    Article  Google Scholar 

  76. Tan L, Li Y, Xu W, Wang P, Liu C (2009) An improved control method for PWM current source rectifier with active damping function. Paper presented at the IEEE international conference on industrial technology (ICIT), Gippsland, 10–13 Feb 2009

    Google Scholar 

  77. Liu F, Wu B, Zargari NR, Pande M (2011) An active damping method using inductor-current feedback control for high-power PWM current-source rectifier. Trans Power Electron 26(9):2580–2587

    Article  Google Scholar 

  78. Tomasini M, Feldman R, Wheeler P, Clare J, Klumpner C (2009) dq-control of high-power current source rectifiers utilizing selective harmonic elimination. Paper presented at the 13th European conference on power electronics and applications (EPE), Barcelona, 8–10 Sept 2009

    Google Scholar 

  79. Noguchi T, Takeuchi D, Nakatomi S, Sato A (2005) Novel direct power control strategy of current source PWM rectifier. Int Conf Power Electron Drives Syst 2:860–865

    Google Scholar 

  80. Noguchi T, Sato A, Takeuchi D (2006) Minimization of DC reactor and operation characteristics of direct-power-controlled current-source PWM rectifier. Paper presented at the IEEE 32nd annual conference on industrial electronics, Paris, 6–10 Nov 2006

    Google Scholar 

  81. Noguchi T, Sano K (2007) Specific harmonic power suppression of direct-power-controlled current-source PWM rectifier. Paper presented at the 7th international conference on power electronics and drive systems (PEDS), Bangkok, 27–30 Nov 2007

    Google Scholar 

  82. Correa P, Rodriguez J (2008) A predictive control scheme for current source rectifiers. Paper presented at the power electronics and motion control conference (EPE-PEMC 2008), Poznan, 1–3 Sept 2008

    Google Scholar 

  83. Correa P, Rodriguez J, Lizama I, Andler D (2009) A predictive control scheme for current-source rectifiers. IEEE Trans Ind Electron 56(5):1813–1815

    Article  Google Scholar 

  84. Lizama I, Rodriguez J, Wu B, Correa P, Rivera M, Perez M (2009) Predictive control for current source rectifiers operating at low switching frequency. Paper presented at the IEEE international conference on power electronics and motion control (IPEMC), Wuhan, 17–20 May 2009

    Google Scholar 

  85. Zavala P, Rivera M, Kouro S, Rodriguez J, Wu B, Yaramasu V, Baier C, Munoz J, Espinoza J, Melin P (2013) Predictive control of a current source rectifier with imposed sinusoidal input currents. Paper presented at IECON 2013—39th annual conference of the IEEE industrial electronics society, Vienna, 11–13 Nov 2013

    Google Scholar 

  86. Falkowski P (2016) Predictive control algorithms of an AC/DC converter with LCL filter. Przegląd Elektrotechniczny 92(4):92–97

    Google Scholar 

  87. Grodzki R, Sikorski A (2014) Predictive control of the AC/DC converter. Paper presented at 16th international power electronics and motion control conference and exposition (PEMC 2014), Antalya, Turkey, 21–24 Sept 2014

    Google Scholar 

  88. Sikorski A (2009) Bezpośrednia regulacja momentu i strumienia maszyn indukcyjnych. Oficyna Wydawnicza Politechniki Białostockiej, Białystok

    Google Scholar 

  89. Świerczyński D (2005) Direct torque control with space vector modulation (DTC-SVM) of inverter-fed permanent magnet synchronous motor drive. PhD thesis, Warsaw University of Technology, Warsaw

    Google Scholar 

  90. Grodzki R, Sikorski A (2011) A new DTC control for PMSM with torque ripple minimization and constant switching frequency. COMPEL 30(3):1069–1081

    Article  MATH  Google Scholar 

  91. Salo M, Tuusa H (2000) A vector controlled current-source PWM rectifier with a novel current damping method. IEEE Trans Ind Electron 15(3):464–470

    Google Scholar 

  92. Xiao Y, Wu B, Rizzo SC, Sotudeh R (1998) A novel power factor control scheme for high-power GTO current-source converter. IEEE Trans Ind App 34(6):1278–1283

    Article  Google Scholar 

  93. Giglia G, Pucci M, Serporta C, Vitale G (2007) Experimental comparison of three-phase distributed generation systems based on VOC and DPC control techniques. Paper presented at European conference on power electronics and applications, Aalborg, Denmark, 2–5 Sept 2007

    Google Scholar 

  94. Yaramasu V, Wu B, Rivera M, Narimani M, Kouro S, Rodriguez J (2015) Generalized approach for predictive control with common-mode voltage mitigation in multilevel diode-clamped converters. Power Electron IET 8(8):1440–1450

    Article  Google Scholar 

  95. Busquets-Monge S, Somavilla S, Bordonau J, Boroyevich D (2007) Capacitor voltage balance for the neutral-point-clamped converter using the virtual space vector concept with optimized spectral performance. IEEE Trans Power Electron 22(4):1128–1135

    Article  Google Scholar 

  96. Celanovic N, Voroyevich D (2000) A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans Power Electron 15(2):242–249

    Article  Google Scholar 

  97. Gupta AK, Khambadkone AM (2007) A simple space vector PWM scheme to operate a three-level NPC inverter at high modulation index including over modulation region, with neutral point balancing. IEEE Trans Ind App 43(3):751–760

    Article  Google Scholar 

  98. Lei L, Yunping Z, Zhan W, Hongyuan J (2005) A simple neutral-point voltage balancing control method for three-level NPC PWM VSI inverters. Paper presented at the IEEE international conference on electric machines and drives, San Antonio, 15 May 2005

    Google Scholar 

  99. Sikorski A, Kulikowski K, Korzeniewski M (2013) Modern direct torque and flux control methods of an induction machine supplied by three-level inverter. Bull Pol Acad Sci Tech Sci 61(4):771–778

    Google Scholar 

  100. Malinowski M, Bernet S (2008) A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter. IEEE Trans Ind Electron 55(4):1876–1880

    Article  Google Scholar 

  101. Serpa LA, Ponnaluri S, Barbosa PM, Kolar JW (2007) Modified direct power control strategy allowing the connection of three-phase inverters to the grid through LCL filters. IEEE Trans Ind App 43(5):1388–1400

    Article  Google Scholar 

  102. Grodzki R (2013) A new predictive DTC strategy for a DC/AC inverter-fed permanent magnet synchronous machine. Paper presented at the XV international PhD workshop OWD 2013, Wisła, 19–22 Oct 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Grodzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Godlewska, A., Grodzki, R., Falkowski, P., Korzeniewski, M., Kulikowski, K., Sikorski, A. (2017). Advanced Control Methods of DC/AC and AC/DC Power Converters—Look-Up Table and Predictive Algorithms. In: Kabziński, J. (eds) Advanced Control of Electrical Drives and Power Electronic Converters. Studies in Systems, Decision and Control, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-45735-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45735-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45734-5

  • Online ISBN: 978-3-319-45735-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics