Skip to main content

Case Selection for the Use of Cone Beam Computed Tomography in Dentistry Based on Diagnostic Efficacy and Risk Assessment

  • Chapter
  • First Online:
Evidence-Based Decision Making in Dentistry

Abstract

Case selection for cone beam computed tomography (CBCT) for dental purposes is primarily based on individual risk-benefit assessment, balancing between the long-term radiation risks of CBCT and its ultimate benefit for each individual patient. Based on the currently available literature, the expected ultimate benefit to the patient, as evaluated by the level of diagnostic efficacy of CBCT in dentistry, is yet unclear, and it is mainly limited to its technical and the diagnostic accuracy efficacies. Even for these levels of efficacy, evidence is incomplete. Therefore, the efficacy of CBCT in supporting the practitioner’s decision making, the treatment planning, and eventually in affecting treatment outcomes is not fully elucidated. On the other hand, the potential radiation risks of CBCT scan are uncertain and are stochastic in nature, thus requiring a preventive clinical approach. Consequently, cautious decision making is warranted when a CBCT scan is considered. This chapter reviews the current literature concerning the benefits of CBCT in dental practice, alongside its risks in this use, and presents a practical case-selection algorithm for the use of CBCT in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AAE and AAOMR Joint Position Statement: use of cone beam computed tomography in endodontics. Update 2015.

    Google Scholar 

  2. AAE and AAOMR Joint Position Statement – use of cone-beam-computed tomography in endodontics. 2010.

    Google Scholar 

  3. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol. 2006;35(6):410–6.

    Article  PubMed  Google Scholar 

  4. Patel S. New dimensions in endodontic imaging: part 2. Cone beam computed tomography. Int Endod J. 2009;42(6):463–75.

    Article  PubMed  Google Scholar 

  5. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venskutonis T, Plotino G, Juodzbalys G, Mickeviciene L. The importance of cone-beam computed tomography in the management of endodontic problems: a review of the literature. J Endod. 2014;40:1895–901.

    Article  PubMed  Google Scholar 

  7. Aljehani YA. Diagnostic applications of cone-beam CT for periodontal diseases. Int J Dent. 2014;2014:865079.

    PubMed  PubMed Central  Google Scholar 

  8. Jaju PP, Jaju SP. Clinical utility of dental cone-beam computed tomography: current perspectives. Clin Cosmet Investig Dent. 2014;6:29–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77.

    Article  PubMed  Google Scholar 

  10. Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg. 2013;4(1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Agrawal JM, Agrawal MS, Nanjannawar LG, Parushetti AD. CBCT in orthodontics: the wave of future. J Contemp Dent Pract. 2013;14(1):153–7.

    PubMed  Google Scholar 

  12. Rosen E, Taschieri S, Del-Fabbro M, Beitlitum I, Tsesis I. The diagnostic efficacy of cone-beam computed tomography in endodontics: a systematic review and analysis by a hierarchical model of efficacy. J Endod. 2015;41:1008–14.

    Article  PubMed  Google Scholar 

  13. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics- a review. Int Endod J. 2015; 48(1):3–15.

    Google Scholar 

  14. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    Article  PubMed  Google Scholar 

  15. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

    Article  PubMed  Google Scholar 

  16. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  PubMed  Google Scholar 

  17. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rehani MM, Berry M. Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ. 2000;320(7235):593–4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ee J, Fayad MI, Johnson BR. Comparison of endodontic diagnosis and treatment planning decisions using cone-beam volumetric tomography versus periapical radiography. J Endod. 2014;40(7):910–6.

    Article  PubMed  Google Scholar 

  20. Pittayapat P, Limchaichana-Bolstad N, Willems G, Jacobs R. Three-dimensional cephalometric analysis in orthodontics: a systematic review. Orthod Craniofac Res. 2014;17(2):69–91.

    Article  PubMed  Google Scholar 

  21. Kim IH, Patel MJ, Hirt SL, Kantor ML. Clinical research and diagnostic efficacy studies in the oral and maxillofacial radiology literature: 1996–2005. Dentomaxillofac Radiol. 2011;40(5):274–81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scarfe WC. “All that glitters is not gold”: standards for cone-beam computerized tomographic imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):402–8.

    Article  PubMed  Google Scholar 

  23. Kaeppler G, Cornelius CP, Ehrenfeld M, Mast G. Diagnostic efficacy of cone-beam computed tomography for mandibular fractures. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(1):98–104.

    Article  PubMed  Google Scholar 

  24. Chavda R, Mannocci F, Andiappan M, Patel S. Comparing the in vivo diagnostic accuracy of digital periapical radiography with cone-beam computed tomography for the detection of vertical root fracture. J Endod. 2014;40:1524–9.

    Article  PubMed  Google Scholar 

  25. Corbella S, Del Fabbro M, Tamse A, Rosen E, Tsesis I, Taschieri S. Cone beam computed tomography for the diagnosis of vertical root fractures: a systematic review of the literature and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:593–602.

    Article  PubMed  Google Scholar 

  26. Dailey B, Mines P, Anderson A, M. S. The use of cone beam computer tomography in endodontics: results of a questionnaire. AAE Annual Session abstract presentation; 2010.

    Google Scholar 

  27. Neves FS, Freitas DQ, Campos PS, Ekestubbe A, Lofthag-Hansen S. Evaluation of cone-beam computed tomography in the diagnosis of vertical root fractures: the influence of imaging modes and root canal materials. J Endod. 2014;40:1530–6.

    Article  PubMed  Google Scholar 

  28. Azim AA, Azim KA, Deutsch AS, Huang GT. Acquisition of anatomic parameters concerning molar pulp chamber landmarks using cone-beam computed tomography. J Endod. 2014;40(9):1298–302.

    Article  PubMed  Google Scholar 

  29. Matherne RP, Angelopoulos C, Kulild JC, Tira D. Use of cone-beam computed tomography to identify root canal systems in vitro. J Endod. 2008;34(1):87–9.

    Article  PubMed  Google Scholar 

  30. Metska ME, Liem VM, Parsa A, Koolstra JH, Wesselink PR, Ozok AR. Cone-beam computed tomographic scans in comparison with periapical radiographs for root canal length measurement: an in situ study. J Endod. 2014;40(8):1206–9.

    Article  PubMed  Google Scholar 

  31. Liang YH, Jiang L, Chen C, Gao XJ, Wesselink PR, Wu MK, et al. The validity of cone-beam computed tomography in measuring root canal length using a gold standard. J Endod. 2013;39(12):1607–10.

    Article  PubMed  Google Scholar 

  32. Jeger FB, Janner SF, Bornstein MM, Lussi A. Endodontic working length measurement with preexisting cone-beam computed tomography scanning: a prospective, controlled clinical study. J Endod. 2012;38(7):884–8.

    Article  PubMed  Google Scholar 

  33. Janner SF, Jeger FB, Lussi A, Bornstein MM. Precision of endodontic working length measurements: a pilot investigation comparing cone-beam computed tomography scanning with standard measurement techniques. J Endod. 2011;37(8):1046–51.

    Article  PubMed  Google Scholar 

  34. Abella F, Patel S, Duran-Sindreu F, Mercade M, Bueno R, Roig M. Evaluating the periapical status of teeth with irreversible pulpitis by using cone-beam computed tomography scanning and periapical radiographs. J Endod. 2012;38(12):1588–91.

    Article  PubMed  Google Scholar 

  35. Pope O, Sathorn C, Parashos P. A comparative investigation of cone-beam computed tomography and periapical radiography in the diagnosis of a healthy periapex. J Endod. 2014;40(3):360–5.

    Article  PubMed  Google Scholar 

  36. Pauwels R, Cockmartin L, Ivanauskaite D, Urboniene A, Gavala S, Donta C, et al. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry. Phys Med Biol. 2014;59(14):3877–91.

    Article  PubMed  Google Scholar 

  37. Petersen LB, Olsen KR, Matzen LH, Vaeth M, Wenzel A. Economic and health implications of routine CBCT examination before surgical removal of the mandibular third molar in the Danish population. Dentomaxillofac Radiol. 2015;44(6):20140406.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu TH, Lin WC, Chen WK, Chang YC, Hwang JJ. Predicting cancer risks from dental computed tomography. J Dent Res. 2015;94(1):27–35.

    Article  PubMed  Google Scholar 

  39. ADA, editor The use of cone-beam computed tomography in dentistry. An advisory statement from the American Dental Association Council on Scientific Affairs. Chicago: The American Dental Association Council on Scientific Affairs; 2012.

    Google Scholar 

  40. European-Commission. Radiation protection No 172 Cone beam CT for dental and maxillofacial radiology - Evidence-based guidelines. A report prepared by the SEDENTEXCT project (www.sedentexct.eu.). Luxembourg; 2012.

    Google Scholar 

  41. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. 1991;11(2):88–94.

    Article  PubMed  Google Scholar 

  42. Krupinski EA, Jiang Y. Anniversary paper: evaluation of medical imaging systems. Med Phys. 2008;35(2):645–59.

    Article  PubMed  Google Scholar 

  43. Matzen LH, Wenzel A. Efficacy of cone beam computed tomography for assessment of impacted mandibular third molars: a review based on a hierarchical model of evidence. Dentomaxillofac Radiol. 2015;44:20140189.

    Article  PubMed  Google Scholar 

  44. Carrotte P. Endodontics: part 2 diagnosis and treatment planning. Br Dent J. 2004;197(5):231–8.

    Article  PubMed  Google Scholar 

  45. Mota de Almeida F, Knutsson K, Flygare L. The impact of cone beam computed tomography (CBCT) on the choice of endodontic diagnosis. Int Endod J. 2015;48:564–72.

    Article  PubMed  Google Scholar 

  46. Bernardes RA, de Moraes IG, Hungaro Duarte MA, Azevedo BC, de Azevedo JR, Bramante CM. Use of cone-beam volumetric tomography in the diagnosis of root fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):270–7.

    Article  PubMed  Google Scholar 

  47. de Paula-Silva FW, Wu MK, Leonardo MR, da Silva LA, Wesselink PR. Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as a gold standard. J Endod. 2009;35(7):1009–12.

    Article  PubMed  Google Scholar 

  48. Gutmann JL. Evidence-based/guest editorial. J Endod. 2009;35:1093.

    Article  PubMed  Google Scholar 

  49. Mileman PA, van den Hout WB. Evidence-based diagnosis and clinical decision making. Dentomaxillofac Radiol. 2009;38(1):1–10.

    Article  PubMed  Google Scholar 

  50. Rosenberg W, Donald A. Evidence based medicine: an approach to clinical problem-solving. BMJ. 1995;310(6987):1122–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sutherland SE, Matthews DC. Conducting systematic reviews and creating clinical practice guidelines in dentistry: lessons learned. J Am Dent Assoc. 2004;135(6):747–53.

    Article  PubMed  Google Scholar 

  52. Patel S, Dawood A, Whaites E, Pitt FT. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447–62.

    Article  PubMed  Google Scholar 

  53. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, et al. Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol. 2015;44(1):20140197.

    Article  PubMed  Google Scholar 

  54. Givol N, Rosen E, Taicher S, Tsesis I. Risk management in endodontics. J Endod. 2010;36(6):982–4.

    Article  PubMed  Google Scholar 

  55. European-Environment-Agency, editor. Late lessons from early warnings: the precautionary principle 1896–2000. Environmental issue report No 22; 2001. Copenhagen: Office for Official Publications of the European Communities; 2001.

    Google Scholar 

  56. Peto J, Decarli A, La Vecchia C, Levi F, Negri E. The European mesothelioma epidemic. Br J Cancer. 1999;79(3–4):666–72.

    Article  PubMed  PubMed Central  Google Scholar 

  57. KHEIFETS LI, HESTER GL, BANERJEE GL. The precautionary principle and EMF: implementation and evaluation. J Risk Res. 2001;4(2):113–25.

    Article  Google Scholar 

  58. Ashton J. “Man has lost the capacity to foresee and to forestall, he will end by destroying the world.” (Albert Schweitzer). J Epidemiol Community Health. 2003;57(5):314.

    Article  PubMed Central  Google Scholar 

  59. Berman LH, Hartwell GR. Diagnosis. In: Cohen S, Hargreaves KM, editors. Pathways of the pulp. 9th ed. St. Louis: Mosby; 2006. p. 2–39.

    Google Scholar 

  60. Parker L. Computed tomography scanning in children: radiation risks. Pediatr Hematol Oncol. 2001;18(5):307–8.

    Article  PubMed  Google Scholar 

  61. Friedland B. Medicolegal issues related to cone beam CT. Semin Orthod. 2009;15:77–84.

    Article  Google Scholar 

  62. Tsesis I, Rosen E, Tamse A, Taschieri S, Kfir A. Diagnosis of vertical root fractures in endodontically treated teeth based on clinical and radiographic indices: a systematic review. J Endod. 2010;36(9):1455–8.

    Article  PubMed  Google Scholar 

  63. da Silveira PF, Vizzotto MB, Liedke GS, da Silveira HL, Montagner F, da Silveira HE. Detection of vertical root fractures by conventional radiographic examination and cone beam computed tomography – an in vitro analysis. Dent Traumatol. 2013;29:41–6.

    Article  PubMed  Google Scholar 

  64. Edlund M, Nair MK, Nair UP. Detection of vertical root fractures by using cone-beam computed tomography: a clinical study. J Endod. 2011;37(6):768–72.

    Article  PubMed  Google Scholar 

  65. Fayad MI, Ashkenaz PJ, Johnson BR. Different representations of vertical root fractures detected by cone-beam volumetric tomography: a case series report. J Endod. 2012;38(10):1435–42.

    Article  PubMed  Google Scholar 

  66. Ferreira RI, Bahrami G, Isidor F, Wenzel A, Haiter-Neto F, Groppo FC. Detection of vertical root fractures by cone-beam computerized tomography in endodontically treated teeth with fiber-resin and titanium posts: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:e49–57.

    Article  PubMed  Google Scholar 

  67. Fuss Z, Lustig J, Katz A, Tamse A. An evaluation of endodontically treated vertical root fractured teeth: impact of operative procedures. J Endod. 2001;27(1):46–8.

    Article  PubMed  Google Scholar 

  68. Hassan B, Metska ME, Ozok AR, van der Stelt P, Wesselink PR. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan. J Endod. 2009;35(5):719–22.

    Article  PubMed  Google Scholar 

  69. Hassan B, Metska ME, Ozok AR, van der Stelt P, Wesselink PR. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures. J Endod. 2010;36(1):126–9.

    Article  PubMed  Google Scholar 

  70. Kambungton J, Janhom A, Prapayasatok S, Pongsiriwet S. Assessment of vertical root fractures using three imaging modalities: cone beam CT, intraoral digital radiography and film. Dentomaxillofac Radiol. 2012;41(2):91–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Metska ME, Aartman IH, Wesselink PR, Ozok AR. Detection of vertical root fractures in vivo in endodontically treated teeth by cone-beam computed tomography scans. J Endod. 2012;38(10):1344–7.

    Article  PubMed  Google Scholar 

  72. Ozer SY. Detection of vertical root fractures of different thicknesses in endodontically enlarged teeth by cone beam computed tomography versus digital radiography. J Endod. 2010;36(7):1245–9.

    Article  PubMed  Google Scholar 

  73. Ozer SY. Detection of vertical root fractures by using cone beam computed tomography with variable voxel sizes in an in vitro model. J Endod. 2011;37(1):75–9.

    Article  PubMed  Google Scholar 

  74. Varshosaz M, Tavakoli MA, Mostafavi M, Baghban AA. Comparison of conventional radiography with cone beam computed tomography for detection of vertical root fractures: an in vitro study. J Oral Sci. 2010;52(4):593–7.

    Article  PubMed  Google Scholar 

  75. Wang P, He W, Sun H, Lu Q, Ni L. Detection of vertical root fractures in non-endodontically treated molars using cone-beam computed tomography: a report of four representative cases. Dent Traumatol. 2012;28(4):329–33.

    Article  PubMed  Google Scholar 

  76. Zou X, Liu D, Yue L, Wu M. The ability of cone-beam computerized tomography to detect vertical root fractures in endodontically treated and nonendodontically treated teeth: a report of 3 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(6):797–801.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosen, E., Allareddy, V., Tsesis, I. (2017). Case Selection for the Use of Cone Beam Computed Tomography in Dentistry Based on Diagnostic Efficacy and Risk Assessment. In: Rosen, E., Nemcovsky, C., Tsesis, I. (eds) Evidence-Based Decision Making in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-45733-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45733-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45731-4

  • Online ISBN: 978-3-319-45733-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics