Skip to main content

Polymers as Bioactive Materials II: Synthetic/Biodegradable Polymers and Composites

  • Chapter
  • First Online:

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In the previous chapter, we have discussed the natural biodegradable polymers, which are usually degraded by enzymes. In this chapter, we will discuss the main synthetic polymers generally degraded hydrolytically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280:86–89

    Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Google Scholar 

  • Shalaby SW, Burg KJL (2003) Absorbable and biodegradable polymers (advances in polymeric materials). CRC press, Boca Raton

    Google Scholar 

  • Domb AJ, Wiseman DM (1998) Handbook of biodegradable polymers. CRC Press, Boca Raton

    Google Scholar 

  • Lakshmi S, Cato N, Laurencin T (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Google Scholar 

  • Lakshmi S, Katti DS, Laurencin CT (2003) Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev 55:467–482

    Google Scholar 

  • Piskin E (1995) Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed 6:775–795

    Google Scholar 

  • Albertsson AC (2002) Degradable aliphatic polyesters, advances in polymer science, vol 157. Springer, Berlin Heidelberg, Germany

    Google Scholar 

  • Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev 12:301–347

    Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Google Scholar 

  • Gunatillake PA Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16

    Google Scholar 

  • Bronzino JD (2006) Biomedical engineering fundamentals, 3rd edn. CRC press

    Google Scholar 

  • Gijpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–104

    Google Scholar 

  • Kohane DS, Langer R (2008) Polymeric biomaterials in tissue engineering. Pediatr Res 63:487–491

    Google Scholar 

  • Seal BL Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147–230

    Google Scholar 

  • Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Google Scholar 

  • Ferry JD (1988) Structure and rheology of fibrin networks. In: Kramer O (ed) Biological and synthetic polymer networks, Elsevier Applied Science, Amsterdam, the Netherlands, pp 41–55

    Google Scholar 

  • Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Genetic-engineering of structural protein polymers. Biotechnol Prog 6:198–202

    Google Scholar 

  • Mercier NR, Costantino HR, Tracy MA, Bonassar LJ (2005) Poly(lactide-coglycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials 26:1945–1952

    Google Scholar 

  • Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B (2006) Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27:1425–1436

    Google Scholar 

  • Cortesini R (1995) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89

    Google Scholar 

  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827

    Google Scholar 

  • Schwartz I, Robinson BP, Hollinger JO, Szachowicz EH, Brekke J (1995) Calvarial bone repair with porous D,L-polylactide. Otolaryngol Head Neck Surg 112:707–713

    Google Scholar 

  • Ma PX (2004) Tissue engineering. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, vol. 12. John Wiley & Sons Inc, New York, pp 261–291

    Google Scholar 

  • Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R (1993) Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 42:716–723

    Google Scholar 

  • Wang Y, Bian Y-Z, Wu Q, Chen G-Q (2008) Evaluation of three dimensional scaffolds prepared from poly(3-hydroxybutyrate-co- 3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868

    Google Scholar 

  • Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Peter-Atayde A, Langer R (1998) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23:3–9

    Google Scholar 

  • Agrawal CM, Athanasiou KA, Heckman JD (1997) Biodegradable PLA/PGA polymers for tissue engineering in orthopaedica. Mater Sci Forum 250:115–128

    Google Scholar 

  • Sanderson JE (1988) Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrolidone. United States Patent 4(722948)1–14

    Google Scholar 

  • Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparison of biodegradable substances as osteogenic agents. Oral Surg 43:836–843

    Google Scholar 

  • Storey RF, Wiggins JS, Mauritz KA, Puckett AD (1993) Bioabsorbable composites. II: nontoxic, L-lysinebased (polyester-urethane) matrix composites. Polym Compos 14:17

    Google Scholar 

  • Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials 21:2405–2412

    Google Scholar 

  • Li LC, Deng J, Stephens D (2002) Polyanhydride implant for antibiotic delivery—from the bench to the clinic. Adv Drug Deliv Rev 54:963–986

    Google Scholar 

  • Kumar N, Langer RS, Domb AJ (2002) Polyanhydrides: an overview. Adv Drug Deliv Rev 54:889–910

    Google Scholar 

  • Laurencin CT, Norman ME, Elgenxy HM, El-Amin SF, Allcock HR, Pucher SR et al (1993) Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 27:963–973

    Google Scholar 

  • Li C (2002) P oly(L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    Google Scholar 

  • Gopferich A, Tessmar J (2002) Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54:911–931

    Google Scholar 

  • Heller J, Barr J, Steven Y, Khadija NG, Abdellauoi S, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54:1015–1039

    Google Scholar 

  • Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Google Scholar 

  • Goonoo N, Jeetah R, Bhaw-Luximon A, Jhurry D (2015) Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. Eur J Pharm Biopharm 97:371–391

    Google Scholar 

  • Fonseca AC, Gil MH, Simoes PN (2014) Biodegradable poly(ester amide)s—A remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39:1291–1311

    Google Scholar 

  • Schrier J, Fink B, Rodgers J, Vasconez H, DeLuca P (2001) Effect of a freezedried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing. AAPS Pharm Sci Tech 2:73–80

    Google Scholar 

  • Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L (2009) Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials 30:2571–2581

    Google Scholar 

  • Zhao K, Deng Y, Chen CJ, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045

    Google Scholar 

  • Zhao Z, Wang J, Mao H-Q, Leong KW (2003) Polyphosphoesters in drug and gene delivery. Adv Drug Deliv Rev 55:483–499

    Google Scholar 

  • Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B 100B(5)1451–1457. doi:10.1002/jbm.b.32694.

  • Deng Y, Lin X-S, Zheng Z, Deng J-G, Chen J-C, Ma H et al (2003) Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials 24:4273–4281

    Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Google Scholar 

  • Park SJ, Kim TW, Kim MK, Lee SY, Lim S-C (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206

    Google Scholar 

  • Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM et al (2003) Biomimetic surface modification of poly(-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 24:3859–3868

    Google Scholar 

  • Tripathi L, Wu LP, Meng DC, Chen JC, Chen GQ (2013) Biosynthesis and characterization of diblock copolymer of P(3-hydroxypropionate)-block-P (4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules 14:862–870

    Google Scholar 

  • Al-Karawi AJM, Al-Daraji AHR (2010) Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym 79(3):769–774

    Google Scholar 

  • Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Google Scholar 

  • Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL, Bioinert (2004) Biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Tech 64:789–817

    Google Scholar 

  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146

    Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chem Biol 8:536–546

    Google Scholar 

  • Lee SY, Mattanovich D, Villaverde A (2012) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156

    Google Scholar 

  • Choi SG, Kerr WL (2003) Water mobility and textural properties of native and hydroxypropylated wheat starch gels. Carbohydr Polym 51(1):1–8

    Google Scholar 

  • Deng Y, Zhao K, Zhang X-f, Hu P, Chen G-Q (2002) Study on the threedimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23:4049–4056

    Google Scholar 

  • Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-b1 fromPLG microsphere-based scaffolds. Biomaterials 29:1518–1525

    Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Google Scholar 

  • Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jérôme R (2005) Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C 25:23–31

    Google Scholar 

  • Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N et al (2004) Development of guided bone regeneration membrane composed of [beta]-tricalcium phosphate and poly(-lactide-coglycolide-co-caprolactone) composites. Biomaterials 25:5979–5986

    Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274

    Google Scholar 

  • Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C 32(7):1941–1947

    Google Scholar 

  • Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: sol-gel or melt quenched bioactive glasses for tissue engineering, J Biomed Mater Res B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443

  • Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5-SiO2-B2O3 mesoporous glasses. RSC Adv 6:51046–51056

    Google Scholar 

  • Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaur, G. (2017). Polymers as Bioactive Materials II: Synthetic/Biodegradable Polymers and Composites . In: Bioactive Glasses. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45716-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45716-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45715-4

  • Online ISBN: 978-3-319-45716-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics