Skip to main content

Biological Functions and Evolutionary Aspects

  • Chapter
  • First Online:
Attachment Structures and Adhesive Secretions in Arachnids

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

  • 673 Accesses

Abstract

This book demonstrates that there is an enormous diversity of attachment devices and adhesives among arachnids. This diversity is comparable to what has previously been found in insects. In this chapter, we discuss the evolutionary driving forces that might have been acted on both the occurrence and shaping of such structures and secretions, in relation to their biological functions. We discuss instances, where the evolution of such structures might have been driven by another precursor function. Examples for this are the locomotory attachment pads of spiders, in which the original function might have been prey capture, or those of amblypygids, where the original function was obviously attachment to the mother cuticle. We discuss the role of sexual selection, as well as herbivore-plant, predator-prey and parasite-host interactions in the evolution of attachment devices and adhesive secretions in arachnids. Further, we discuss the role of attachment devices in dispersal and microhabitat access.

Our survey of attachment devices and adhesives in the previous chapters elucidates their diversity in arachnids. Some of them may be multi-functional, others serve very specific purposes. In order to fulfill the same biological function, different mechanisms have been often evolved in parallel, based either on mechanical interlocking (structure-based), dry adhesion (van der Waals forces), or wet adhesion (capillary or viscous forces). Locomotory attachment pads, prey capture threads of spiders, mating plugs and camouflaging with soil particles represent good examples where different solutions have independently evolved for a similar kind of problem.

In the following, we will discuss factors that may have caused the evolution of attachment organs, and influenced their shaping. In order to understand the relationship between morphology and function, it should always be kept in mind that derived structures (apomorphies) can only evolve on the basis of precursor structures (plesiomorphies), and this, in turn, limits the possibilities of appearance of novelties (phylogenetic burden). Also the initial function of a structure is often different from the actual one (functional shift). The comparison with analogies (homoplasies) in very distantly related taxa, exhibiting a different body plan (like vertebrates), can help to understand the physical principles that favoured evolution of particular shapes or/and properties of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Ann Rev Ecol Syst 31:79–105

    Article  Google Scholar 

  • Ah-King M, Barron AB, Herberstein ME (2014) Genital evolution: why are females still understudied? PLoS Biol 12(5):e1001851

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiken R, Khan A (1992) The adhesive strength of the palettes of males of a boreal water beetle, Dytiscus alaskanus J. Balfour Browne (Coleoptera: Dytiscidae). Can J Zool 70(7):1321–1324

    Article  Google Scholar 

  • Aisenberg A, Barrantes G (2011) Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae). Naturwissenschaften 98(7):605–613

    Article  CAS  PubMed  Google Scholar 

  • Alberti G, Coons L (1999) Acari: Mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates: Chelicerate Arthropoda, vol 8. Wiley-Liss, New York, pp 515–1265

    Google Scholar 

  • Alcock J (1994) Postinsemination associations between males and females in insects: the mate-guarding hypothesis. Annu Rev Entomol 39(1):1–21

    Article  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60(2):145–164

    Article  CAS  PubMed  Google Scholar 

  • Atyeo WT (1979) Pretarsi of astigmatid mites. Acarologia 20:244–269

    CAS  PubMed  Google Scholar 

  • Bauer T, Pfeiffer M (1991) Shooting springtails with a sticky rod - The flexible hunting behavior of Stenus comma (Coleoptera, Staphylinidae) and the counterstrategies of its prey. Anim Behav 41:819–828

    Article  Google Scholar 

  • Bergsten J, Miller KB (2007) Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes. Plos One 2(6):e522

    Article  PubMed  PubMed Central  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthr Struct Dev 33(1):3–30

    Article  Google Scholar 

  • Beutel R, Gorb S (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39(4):177–207

    Article  Google Scholar 

  • Carl M (1994) Injurious effects on the exoskeleton of Musca domestica L. (Diptera) of phoresy by Lamprochernes nodosus (Schrank) (Pseudoscorpiones, Chernetidae) and the possible functional significance of accessory teeth on the chelal fingers. Bull Brit Arachnol Soc 9(7):246–248

    Google Scholar 

  • da Silva SH, Messas YF, de Oliveira GM, Vasconcellos-Neto J (2015) Substrate selection and spatial segregation by two congeneric species of Eustala (Araneae: Araneidae) in southeastern Brazil. J Arachnol 43(1):59–66

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B 205(1161):489–511

    Article  CAS  Google Scholar 

  • Delfinado-Baker M, Rath W, Boecking O (1992) Phoretic bee mites and honeybee grooming behavior. Int J Acarol 18(4):315–322

    Article  Google Scholar 

  • Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87(3–4):143–169

    Article  Google Scholar 

  • Eberhard WG, Huber BA (2010) Spider genitalia: precise maneuvers with a numb structure in a complex lock. In: Leonard JL, Cordoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, New York, pp 249–284

    Google Scholar 

  • Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthr Struct Dev 33(1):91–102

    Article  CAS  Google Scholar 

  • Elgar MA, Schneider JM, Herberstein ME (2000) Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. Proc R Soc B 267(1460):2439–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstrott J, Irschick DJ (2004) Evolutionary correlations among morphology, habitat use and clinging performance in Caribbean Anolis lizards. Biol J Linn Soc 83(3):389–398

    Article  Google Scholar 

  • Fain A (1994) Adaptation, specificity and host-parasite coevolution in mites (Acari). Int J Parasitol 24(8):1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM (2012) Repeated origin and loss of adhesive toepads in geckos. Plos One 7(6):e39429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getty RM, Coyle FA (1996) Observations on prey capture and anti-predator behaviors of ogre-faced spiders (Deinopis) in southern Costa Rica (Araneae, Deinopidae). J Arachnol 24(2):93–100

    Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Ent Exp Appl 105:13–28

    Article  Google Scholar 

  • Gorb EV, Gorb SN (2013) Anti-adhesive surfaces in plants and their biomimetic potential. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) RSC smart materials no. 4 materials design inspired by nature: function through inner architecture. The Royal Society of Chemistry, London, pp 282–308.

    Google Scholar 

  • Gorb E, Voigt D, Eigenbrode SD, Gorb S (2008) Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthr-Plant Inter 2(4):247–259

    Article  Google Scholar 

  • Gottardo M, Vallotto D, Beutel RG (2015) Giant stick insects reveal unique ontogenetic changes in biological attachment devices. Arthr Struct Dev 44(2):195–199

    Article  Google Scholar 

  • Grawe I, Wolff JO, Gorb SN (2014) Composition and substrate-dependent strength of the silken attachment discs in spiders. J R Soc Interface 11(98):1742–5662

    Article  Google Scholar 

  • Green KK, Kovalev A, Svensson EI, Gorb SN (2013) Male clasping ability, female polymorphism and sexual conflict: fine-scale elytral morphology as a sexually antagonistic adaptation in female diving beetles. J R Soc Interface 10(86):20130409

    Article  Google Scholar 

  • Haas F, Gorb S (2004) Evolution of locomotory attachment pads in the Dermaptera (Insecta). Arthr Struct Dev 33(1):45–66

    Article  Google Scholar 

  • Heethoff M, Koerner L (2007) Small but powerful: the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J Exp Biol 210(17):3036–3042

    Article  PubMed  Google Scholar 

  • Herberstein M, Wignall A, Nessler S, Harmer A, Schneider J (2012) How effective and persistent are fragmentsof male genitalia as mating plugs? Behav Ecol 23(5):1140–1145

    Article  Google Scholar 

  • Jacob A, Gantenbein I, Braunwalder ME, Nentwig W, Kropf C (2004) Morphology and function of male genitalia (spermatophores) in Euscorpius italicus (Euscorpiidae, Scorpiones): Complex spermatophore structures enable safe sperm transfer. J Morphol 260(1):72–84

    Article  PubMed  Google Scholar 

  • Japyassú HF, Macagnan CR (2004) Fishing for prey: the evolution of a new predatory tactic among spiders (Araneae, Pholcidae). Revista de Etologia 6(2):79–94

    Google Scholar 

  • Kuntner M, Kralj‐Fišer S, Schneider J, Li D (2009) Mate plugging via genital mutilation in nephilid spiders: an evolutionary hypothesis. J Zool 277(4):257–266

    Article  Google Scholar 

  • Lapinski W, Walther P, Tschapka M (2015) Morphology reflects microhabitat preferences in an assemblage of neotropical wandering spiders. Zoomorph 134(2):219–236

    Article  Google Scholar 

  • Lipke E, Hammel JU, Michalik P (2015) First evidence of neurons in the male copulatory organ of a spider (Arachnida, Araneae). Biol Lett 11(7):20150465

    Article  PubMed  PubMed Central  Google Scholar 

  • Macrini TE, Irschick DJ, Losos JB (2003) Ecomorphological differences in toepad characteristics between mainland and island anoles. J Herpetol 37(1):52–58

    Article  Google Scholar 

  • Marples MJ, Marples BJ (1937) Notes on the spiders Hyptiotes paradoxus and Cyclosa conica. Proc Zool Soc Lond 3:213–221

    Article  Google Scholar 

  • Mechaber WL, Marshall DB, Mechaber RA, Jobe RT, Chew FS (1996) Mapping leaf surface landscapes. Proc Natl Acad Sci U S A 93(10):4600–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KB (2003) The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol J Linn Soc 79(3):359–388

    Article  Google Scholar 

  • Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol 138(1):91–98

    Article  Google Scholar 

  • Nentwig W (1982) Why do only certain insects escape from a spider’s web? Oecologia 53(3):412–417

    Article  Google Scholar 

  • O'Connor B (1982) Evolutionary ecology of astigmatid mites. Annu Rev Entomol 27(1):385–409

    Google Scholar 

  • Opell B (1994) The ability of spider cribellar prey capture thread to hold insects with different surface features. Funct Ecol 8(2):145–150

    Article  Google Scholar 

  • Opell BD, Schwend HS (2007) The effect of insect surface features on the adhesion of viscous capture threads spun by orb-weaving spiders. J Exp Biol 210(13):2352–2360

    Article  PubMed  Google Scholar 

  • Orivel J, Malherbe M, Dejean A (2001) Relationships between pretarsus morphology and arboreal life in ponerine ants of the genus Pachycondyla (Formicidae: Ponerinae). Ann Entomol Soc Am 94(3):449–456

    Article  Google Scholar 

  • Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45(4):525–567

    Article  Google Scholar 

  • Pelletier Y, Smilowitz Z (1987) Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. Can Entomol 119(12):1139–1142

    Article  Google Scholar 

  • Peretti AV (2004) Functional morphology of spermatophores and female genitalia in bothriurid scorpions: genital courtship, coercion and other possible mechanisms. J Zool 261(02):135–153

    Article  Google Scholar 

  • Proctor HC, Baker RL, Gwynne DT (1995) Mating behaviour and spermatophore morphology: a comparative test of the female-choice hypothesis. Can J Zool 73(11):2010–2020

    Article  Google Scholar 

  • Pugh P, King P, Fordy M (1987) Ambulacral structure in the terrestrial moiety of the intertidal Acari, and its relationship with the lifestyle of the Acari. Acarologia 28(1):3–14

    Google Scholar 

  • Schneider J, Herberstein M, De Crespigny FC, Ramamurthy S, Elgar M (2000) Sperm competition and small size advantage for males of the golden orb-web spider Nephila edulis. J Evol Biol 13(6):939–946

    Article  Google Scholar 

  • Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17(4):583–597

    Article  Google Scholar 

  • Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Boston

    Book  Google Scholar 

  • Uhl G, Nessler SH, Schneider JM (2010) Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica 138(1):75–104

    Article  PubMed  Google Scholar 

  • Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Ann Rev Ecol Syst 25:219–236

    Article  Google Scholar 

  • Vetter RS (1980) Defensive behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae). Behav Ecol Sociobiol 7(3):187–193

    Article  Google Scholar 

  • Voigt D, Gorb SN (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc B 277:895–903

    Article  PubMed  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  CAS  PubMed  Google Scholar 

  • Walter DE, Behan-Pelletier VM (1993) Systematics and ecology of Adhaesozetes polyphyllos sp. nov. (Acari: Oribatida: Licneremaeoidea), a leaf-inhabiting mite from Australian rainforests. Can J Zool 71(5):1024–1040

    Google Scholar 

  • Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, Stenstrup

    Google Scholar 

  • Whitney HM, Federle W (2013) Biomechanics of plant-insect interactions. Curr Opin Plant Biol 16(1):105–111

    Article  PubMed  Google Scholar 

  • Whitney H, Federle W, Glover B (2009) Grip and slip: mechanical interactions between insects and the epidermis of flowers and flower stalks. Integr Comp Biol 2(6):505–508

    Article  Google Scholar 

  • Willkommen J, Michels J, Gorb SN (2015) Functional morphology of the male caudal appendages of the damselfly Ischnura elegans (Zygoptera: Coenagrionidae). Arthr Struct Dev 44(4):289–300

    Article  Google Scholar 

  • Witaliński W, Dabert J, Walzl MG (1992) Morphological adaptation for precopulatory guarding in astigmatic mites (Acari: Acaridida). Int J Acarol 18(1):49–54

    Article  Google Scholar 

  • Wolff JO, Gorb SN (2014) Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders. Zoology 118:1–7

    Article  PubMed  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. Plos One 8(5):e62682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Schönhofer AL, Schaber CF, Gorb SN (2014) Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. J Exp Biol 217(19):3535–3544

    Article  PubMed  Google Scholar 

  • Wolff J, Huber S, Gorb S (2015a) How to stay on mummy’s back: morphological and functional changes of the pretarsus in arachnid postembryonic stages. Arthr Struct Dev 44:301–312

    Article  Google Scholar 

  • Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN (2015b) Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11(12):2394–2403

    Article  CAS  PubMed  Google Scholar 

  • Wolff JO, Martens J, Schönhofer AL, Gorb SN (2016) Evolution of hyper-flexible joints in sticky prey capture appendages of harvestmen (Arachnida, Opiliones). Organism Divers Evol, in press, online pre-pub

    Google Scholar 

  • Zani P (2000) The comparative evolution of lizard claw and toe morphology and clinging performance. J Evol Biol 13(2):316–325

    Article  Google Scholar 

  • Zeh DW, Zeh JA (1992) Failed predation or transportation? Causes and consequences of phoretic behavior in the pseudoscorpion Dinocheirus arizonensis (Pseudoscorpionida: Chernetidae). J Insect Behav 5(1):37–49

    Article  Google Scholar 

  • Zhang F, Chen Z, Dong R-R, Deharveng L, Stevens MI, Huang Y-H, Zhu C-D (2014) Molecular phylogeny reveals independent origins of body scales in Entomobryidae (Hexapoda: Collembola). Mol Phylogenet Evol 70:231–239

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Biological Functions and Evolutionary Aspects. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_9

Download citation

Publish with us

Policies and ethics