Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

Abstract

The compositions and biological functions of sticky secretions are diverse. We here give an overview about glues in arachnids, distinguishing between viscid glue, which remains viscous and often allows reversible and multiple attachment, and solidifying glue, which creates a durable bonding. Viscid glue is often utilized to capture prey, for example in the capture threads of orb web and cob web spiders, and in the pedipalps of harvestmen. It may also be used to coat eggs to make them tacky for substrate attachment and defence against egg predators. Solidifying glue is represented by some coatings of silk fibres, amorphous mating plugs, egg casings and brood sacs, mouthpart attachment of ticks and some mites, and secretions serving the attachment of soil particles for camouflage, as present in some harvestmen and ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ã…bro A (1988) The mode of attachment of mite larvae (Leptus spp.) to harvestmen (Opiliones). J Nat Hist 22(1):123–130

    Article  Google Scholar 

  • Agnarsson I, Blackledge T (2009) Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278(2):134–140

    Article  Google Scholar 

  • Aisenberg A, Barrantes G (2011) Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider Leucauge argyra (Tetragnathidae). Naturwissenschaften 98(7):605–613

    Article  CAS  PubMed  Google Scholar 

  • Alberti G (1973) Ernährungsbiologie und Spinnvermögen der Schnabelmilben (Bdellidae, Trombidiformes). Z Morphol Tiere 76(4):285–338

    Article  Google Scholar 

  • Alberti G (2010) On predation in Epicriidae (Gamasida, Anactinotrichida) and fine-structural details of their forelegs. Soil Organ 82:179–192

    Google Scholar 

  • Alberti G, Ehrnsberger R (1977) Rasterelektronenmikroskopische Untersuchungen zum Spinnvermögen der Bdelliden und Cunaxiden (Acari, Prostigmata). Acarologia 19(1):55–61

    Google Scholar 

  • Althaus S, Jacob A, Graber W, Hofer D, Nentwig W, Kropf C (2010) A double role of sperm in scorpions: The mating plug of Euscorpius italicus (Scorpiones: Euscorpiidae) consists of sperm. J Morphol 271(4):383–393

    PubMed  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33(1):3–30

    Article  PubMed  Google Scholar 

  • Bishop R, Lambson B, Wells C, Pandit P, Osaso J, Nkonge C, Morzaria S, Musoke A, Nene V (2002) A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. Int J Parasitol 32(7):833–842

    Article  CAS  PubMed  Google Scholar 

  • Blackledge TA, Hayashi CY (2006) Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 209(13):2452–2461

    Article  PubMed  Google Scholar 

  • Clotuche G, Mailleux A-C, Deneubourg J-L, Detrain C, Hance T (2012) The silk road of Tetranychus urticae: is it a single or a double lane? Exp Appl Acarol 56(4):345–354

    Article  Google Scholar 

  • Coddington JA (1989) Spinneret silk spigot morphology: evidence for the monophyly of orbweaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae. J Arachnol 17(1):71–95

    Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R (2010) Systematic review and cladistic analysis of the Hernandariinae (Opiliones: Gonyleptidae). Zoologia (Curitiba) 27(4):577–642

    Article  Google Scholar 

  • Decae AE (1984) A theory on the origin of spiders and the primitive function of spider silk. J Arachnol 12(1):21–28

    Google Scholar 

  • Dickinson GH, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, Everett RK, Bonaventura J, Rittschof D (2009) Barnacle cement: a polymerization model based on evolutionary concepts. J Exp Biol 212(21):3499–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirks J-H, Federle W (2011) Fluid-based adhesion in insects–principles and challenges. Soft Matter 7(23):11047–11053

    Article  CAS  Google Scholar 

  • Dirks J-H, Clemente CJ, Federle W (2009) Insect tricks: two-phasic foot pad secretion prevents slipping. J R Soc Interface 7(45):587–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87(3–4):143–169

    Article  Google Scholar 

  • Eberhard WG (2010) Possible functional significance of spigot placement on the spinnerets of spiders. J Arachnol 38(3):407–414

    Article  Google Scholar 

  • Edmonds DT, Vollrath F (1992) The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web. Proc R Soc B 248(1322):145–148

    Article  CAS  Google Scholar 

  • Elettro H, Neukirch S, Antkowiak A, Vollrath F (2015) Adhesion of dry and wet electrostatic capture silk of uloborid spider. Sci Nat 102(7–8):41

    Article  CAS  Google Scholar 

  • Elettro H, Neukirch S, Vollrath F, Antkowiak A (2016) In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties. Proc Natl Acad Sci U S A 113(22):6143–6147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Foelix RF, Rast B, Peattie AM (2012) Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors. J Exp Biol 215(7):1084–1089

    Article  PubMed  Google Scholar 

  • Foelix R, Erb B, Rast B (2013) Alleged silk spigots on tarantula feet: Electron microscopy reveals sensory innervation, no silk. Arthropod Struct Dev 42(3):209–217

    Article  PubMed  Google Scholar 

  • Gerson U (1979) Silk production in Tetranychus (Acari: Tetranychidae). Recent Adv Acarol 1:177–188

    Article  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18(1):5–70

    PubMed  Google Scholar 

  • Glatz L (1973) Der Spinnapparat der Orthognatha (Arachnida, Araneae). Z Morphol Tiere 75(1):1–50

    Article  Google Scholar 

  • Gnaspini P, Hara MR (2007) Defense mechanisms. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, pp 374–399

    Google Scholar 

  • Gorb SN, Niederegger S, Hayashi CY, Summers AP, Vötsch W, Walther P (2006) Biomaterials: silk-like secretion from tarantula feet. Nature 443(7110):407–407

    Article  CAS  PubMed  Google Scholar 

  • Gregson JD (1960) Morphology and functioning of the mouthparts of Dermacentor andersoni Stiles. Acta Trop 17(1):48–49

    CAS  PubMed  Google Scholar 

  • Grimm U (1985) Die Gnaphosidae Mitteleuropas (Arachnida, Araneae). Abh naturwiss Ver Hamburg, (NF) 26:1–318

    Google Scholar 

  • Gruber J (1970) Die „Nemastoma“-Arten Nordamerikas (Ischyropsalididae, Opiliones, Arachnida). Ann Naturhist Mus Wien 74:129–144

    Google Scholar 

  • Gruber J (1993) Beobachtungen zur Ökologie und Biologie von Dicranolasma scabrum (HERBST) (Arachnida: Opiliones) Teil I. Ann Naturhist Mus Wien 94:393–426

    Google Scholar 

  • Hajer J, Hrubá L (2007) Wrap attack of the spider Achaearanea tepidariorum (Araneae: Theridiidae) by preying on mealybugs Planococcus citri (Homoptera: Pseudococcidae). J Ethol 25(1):9–20

    Article  Google Scholar 

  • Hazan A, Gertler A, Tahori A, Gerson U (1975) Spider mite webbing—III. Solubilization and amino acid composition of the silk protein. Comp Biochem Physiol B 51(4):457–462

    CAS  PubMed  Google Scholar 

  • Helbig R, Nickerl J, Neinhuis C, Werner C (2011) Smart skin patterns protect springtails. Plos One 6(9):e25105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennebert E, Viville P, Lazzaroni R, Flammang P (2008) Micro-and nanostructure of the adhesive material secreted by the tube feet of the sea star Asterias rubens. J Struct Biol 164(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Hermann HR, Blum MS (1981) Defensive mechanisms in the social Hymenoptera. Soc Insects 2:77–197

    Google Scholar 

  • Huang Y, Wang Y, Sun L, Agrawal R, Zhang M (2015) Sundew adhesive: a naturally occurring hydrogel. J R Soc Interface 12:20150226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Japyassú HF, Macagnan CR (2004) Fishing for prey: the evolution of a new predatory tactic among spiders (Araneae, Pholcidae). Revista de Etologia 6(2):79–94

    Google Scholar 

  • Juberthie C (1964) Recherches sur la biologie des Opilions. Ann Spéléol 19:5–238

    Google Scholar 

  • Kanazawa M, Sahara K, Saito Y (2011) Silk threads function as an ‘adhesive cleaner’for nest space in a social spider mite. Proc R Soc B 278(1712):1653–1660

    Article  PubMed  Google Scholar 

  • Kästner A (1941) 2. Ordnung der Arachnida: Pedipalpi Latreille = Geißel-Scorpione. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie: chelicerata, vol 3. Walter de Gruyter & Co., Berlin, pp 1–76

    Google Scholar 

  • Kemp D, Stone B, Binnington K (1982) Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions, and the host response. In: Obenchain FD, Galun R (eds) Physiology of ticks, vol 1. Pergamon Press, Oxford, pp 119–167

    Chapter  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology. Springer Science & Business Media, London

    Book  Google Scholar 

  • Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 160–186

    Chapter  Google Scholar 

  • Kovoor J, Zylberberg L (1972) Histologie et infrastructure de la glande chélicérienne de Scytodes delicatula Sim. (Araneidae, Scytodidae). Ann Sci Nat Zool Paris 14:333–388

    Google Scholar 

  • Kovoor J, Zylberberg L (1980) Fine-structural aspects of silk secretion in a spider (Araneus diadematus).1. Elaboration in the pyriform glands. Tissue Cell 12(3):547–556

    Article  CAS  PubMed  Google Scholar 

  • Lemos F, Sarmento RA, Pallini A, Dias CR, Sabelis MW, Janssen A (2010) Spider mite web mediates anti-predator behaviour. Exp Appl Acarol 52(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez A (1987) Glandular aspects of sexual biology. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 121–132

    Chapter  Google Scholar 

  • Lopez A, Emerit M, Rambla M (1980) Contribution a l’étude de Sabacon paradoxum Simon 1879 (Opiliones, Palpatores, Ischyropsalididae). Stations nouvelles, particularités électromicroscopiques du prosoma et de ses appendices. In: Comptes Rendus de la 5è Colloque d’Arachnologie. pp 147–161

    Google Scholar 

  • Martens J (1993) Further cases of paternal care in Opiliones (Arachnida). Trop Zool 6(1):97–107

    Article  Google Scholar 

  • McAlister W (1960) The spitting habit in the spider Scytodes intricata Banks (Family Scytodidae). Tex J Sci 12:17–20

    Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin

    Book  Google Scholar 

  • Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Biol Assoc UK 73(03):689–702

    Article  CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677

    Article  Google Scholar 

  • Opell BD, Schwend HS, Vito ST (2011) Constraints on the adhesion of viscous threads spun by orb-weaving spiders: the tensile strength of glycoprotein glue exceeds its adhesion. J Exp Biol 214(13):2237–2241

    Article  CAS  PubMed  Google Scholar 

  • Palmer JM, Coyle FA, Harrison FW (1982) Structure and cytochemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Araneae, Antrodiaetidae). J Morphol 174(3):269–274

    Article  CAS  Google Scholar 

  • Peattie AM, Dirks JH, Henriques S, Federle W (2011) Arachnids secrete a fluid over their adhesive pads. PLoS One 6(5), e20485

    Google Scholar 

  • Pocock R (1895) Some suggestions on the origin and evolution of web-spinning in spiders. Nature 51:417–420

    Article  Google Scholar 

  • Polis GA, Sissom W (1990) Life history. In: Polis GA (ed) The biology of scorpions. Standford University Press, Stanford, pp 161–223

    Google Scholar 

  • Raspotnig G, Leis H-J (2009) Wearing a raincoat: exocrine secretions contain anti-wetting agents in the oribatid mite, Liacarus subterraneus (Acari: Oribatida). Exp Appl Acarol 47(3):179–190

    Article  CAS  PubMed  Google Scholar 

  • Requena GS, Buzatto BA, Munguía-Steyer R, Machado G (2009) Efficiency of uniparental male and female care against egg predators in two closely related syntopic harvestmen. Anim Behav 78(5):1169–1176

    Article  Google Scholar 

  • Rimsky-Korsakow AP (1924) Die Kugelhaare von Nemastoma lugubre, Müll. Zool Anz 60:1–16

    Google Scholar 

  • Rind FC, Birkett CL, Duncan BJA, Ranken AJ (2011) Tarantulas cling to smooth vertical surfaces by secreting silk from their feet. J Exp Biol 214(11):1874–1879

    Article  PubMed  Google Scholar 

  • Röper H (1977) Analytische Untersuchungen des Wehrsekretes von Peripatopsis moseleyi (Onychophora). Z Naturforsch 32:57–60

    Google Scholar 

  • Rost K, Schauer R (1977) Physical and chemical properties of the mucin secreted by Drosera capensis. Phytochemistry 16(9):1365–1368

    Article  CAS  Google Scholar 

  • Roewer CF (1923) Die Weberknechte der Erde. Gustav Fischer, Jena

    Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  PubMed  CAS  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2011) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahni V, Dhinojwala A, Opell BD, Blackledge TA (2014a) Prey capture adhesives produced by orb-weaving spiders. In: Asakura T, Miller T (eds) Biotechnology of silk. Springer Science + Business Media, Dordrecht, pp 203–217

    Chapter  Google Scholar 

  • Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A (2014b) Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15(4):1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Schaider M, Raspotnig G (2009) Unusual organization of scent glands in Trogulus tricarinatus (Opiliones, Trogulidae): evidence for a non-defensive role. J Arachnol 37(1):78–83

    Article  Google Scholar 

  • Schönhofer AL (2013) A taxonomic catalogue of the Dyspnoi Hansen and Sørensen, 1904 (Arachnida: Opiliones). Zootaxa 3679(1):1–68

    Article  PubMed  Google Scholar 

  • Schwangart F (1907) Beiträge zur Morphologie und Systematik der Opilioniden: 1. Ãœber das Integument der Troguloidae. Zool Anz 31:161–183

    Google Scholar 

  • Seniczak S, Seniczak A (2013) Morphology of juvenile stages and ontogeny of three species of Damaeidae (Acari: Oribatida). Int J Acarol 39(2):160–179

    Article  Google Scholar 

  • Shear WA (1986) A cladistic analysis of the opilionid superfamily Ischyropsalidoidea, with descriptions of the new family Ceratolasmatidae, the new genus Acuclavella, and four new species. Am Mus Novit 2844

    Google Scholar 

  • Shultz JW (1987) The origin of the spinning apparatus in spiders. Biol Rev 62(2):89–113

    Article  Google Scholar 

  • Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9(6):661–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley E (2011) Egg hiding in four harvestman species from Uruguay (Opiliones: Gonyleptidae). J Arachnol 39(3):495–496

    Article  Google Scholar 

  • Stubbs D, Tillinghast EK, Townley MA, Cherim N (1992) Fibrous composite structure in a spider silk. Naturwissenschaften 79(5):231–234

    Article  Google Scholar 

  • Suter RB, Stratton GE (2009) Spitting performance parameters and their biomechanical implications in the spitting spider, Scytodes thoracica. J Insect Sci 9(1):62

    PubMed Central  Google Scholar 

  • Torres FG, Troncoso OP, Cavalie F (2014) Physical characterization of the liquid adhesive from orb-weaving spiders. Mat Sci Eng C-Mater 34:341–344

    Article  CAS  Google Scholar 

  • Townley MA, Tillinghast EK (2003) On the use of ampullate gland silks by wolf spiders (Araneae, Lycosidae) for attaching the egg sac to the spinnerets and a proposal for defining nubbins and tartipores. J Arachnol 31(2):209–245

    Article  Google Scholar 

  • Uhl G, Nessler SH, Schneider JM (2010) Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica 138(1):75–104

    Article  PubMed  Google Scholar 

  • Uhl G, Kunz K, Vöcking O, Lipke E (2014) A spider mating plug: origin and constraints of production. Biol J Linn Soc 113(2):345–354

    Article  Google Scholar 

  • Vetter RS (1980) Defensive behavior of the black widow spider Latrodectus hesperus (Araneae: Theridiidae). Behav Ecol Sociobiol 7(3):187–193

    Article  Google Scholar 

  • Voetsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    Article  Google Scholar 

  • Voigt D, Gorb SN (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc B 277(1683):895–903

    Article  PubMed  Google Scholar 

  • Vollrath F, Tillinghast E (1991) Glycoprotein glue beneath a spider web’s aqueous coat. Naturwissenschaften 78(12):557–559

    Article  CAS  Google Scholar 

  • Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spiders viscid spiral. Nature 345:526–528

    Article  CAS  Google Scholar 

  • Wachmann E (1970) Der Feinbau der sog. Kugelhaare der Fadenkanker (Opiliones, Nemastomatidae). Z Zellforsch 103:518–525

    Article  Google Scholar 

  • Weygoldt P (1966) Spermatophore web formation in a pseudoscorpion. Science 153(3744):1647–1649

    Article  CAS  PubMed  Google Scholar 

  • Weygoldt P (1968) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen. Z Morphol Tiere 63(2):111–154

    Article  Google Scholar 

  • Weygoldt P (1969) Biology of pseudoscorpions. Harvard University Press, Cambridge

    Google Scholar 

  • Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, Stenstrup

    Google Scholar 

  • Weygoldt P, Huber S (2013) Sperm transfer and maternal care in Thelyphonus cf caudatus from Lombok, Indonesia (Arachnida, Uropygi, Thelyphonida). Zool Anz 252(3):348–349

    Article  Google Scholar 

  • Willemart RH (2001) Egg covering behavior of the neotropical harvestman Promitobates ornatus (Opiliones, Gonyleptidae). J Arachnol 29(2):249–252

    Article  Google Scholar 

  • WitaliÅ„ski W, ŽuwaÅ‚a K (1981) Ultrastructural studies of egg envelopes in harvestmen (Chelicerata, Opiliones). Int J Invertebr Rep Dev 4(2):95–106

    Article  Google Scholar 

  • Wolff JO, Schönhofer AL, Schaber CF, Gorb SN (2014) Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. J Exp Biol 217(19):3535–3544

    Article  PubMed  Google Scholar 

  • Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN (2015) Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11(12):2394–2403

    Article  CAS  PubMed  Google Scholar 

  • Wolff JO, García-Hernández S, Gorb SN (2016a) Adhesive secretions in harvestmen (Arachnida: Opiliones). In: Smith AM, Callows JA (eds) Biological adhesives. Springer, Berlin

    Google Scholar 

  • Wolff JO, Schönhofer AL, Martens J, Wijnhoven H, Taylor CK, Gorb SN (2016b) The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones). Zool J Linn Soc 177:558–601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

8.1 Electronic Supplementary Material

Video 8.1

The harvestman Mitostoma chrysomelas (Nemastomatidae) capturing a springtail with its sticky pedipalps. Real speed (M2V 5601 kb)

Video 8.2

M. chrysomelas capturing a springtail with its sticky pedipalps. Also note the action of the pincer-like chelicerae in the end. Recorded with 500 fps and playback with 15 fps (AVI 18445 kb)

Video 8.3

M. chrysomelas capturing a springtail with its sticky pedipalps. Recorded with 500 fps and playback with 15 fps (AVI 4777 kb)

Video 8.4

M. chrysomelas capturing a springtail by clamping its antenna between the tibia and the hyper-flexible tarsus of the sticky pedipalp. Recorded with 500 fps and playback with 15 fps (AVI 438 kb)

Video 8.5

Demonstration of the stickiness and visco-elasticity of the glue on the pedipalp of M. chrysomelas. Real time (M2V 3405 kb)

Video 8.6

Adhesion test on a glue droplet of a pedipalpal glandular seta of Nemastoma lugubre (Nemastomatidae). The pedipalp is retracted from the glass beam by a motor at a rate of 1 mm/s. Recorded with 500 fps and playback with 30 fps (AVI 27753 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Adhesive Secretions. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_8

Download citation

Publish with us

Policies and ethics