Skip to main content

Biomimetics: What Can We Learn From Arachnids?

  • Chapter
  • First Online:
Attachment Structures and Adhesive Secretions in Arachnids

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

Abstract

In this chapter we discuss features rendering arachnids interesting models for the development of biomimetic adhesive materials and attachment systems. Geckoes have been established as a model for the development of dry adhesive materials. Spiders and trombidiform mites exhibit very similar adhesive structures to those of geckoes, and can be much easier maintained in the lab and manipulated in experiments. Complex hierarchical tenent setae are still not technically reproducible in all essential details, and existing ‘gecko-inspired’ adhesives are still very limited in their performance in the real world applications. The alternative structure of the spatulate adhesive surfaces of whip-spider feet may represent a new source of inspiration. We further present some unique principles recently explored in arachnids that may inspire the next generation of biomimetic adhesive materials, gripping devices, and glue applications. These are (1) the smart glue application in spider silk anchors, (2) the adhesive nano-fibre-mats of cribellar capture threads, (3) the prehensile feet of harvestmen, (4) the transverse stripe-shaped contact of some arolia, (5) the pressure sensitive adhesives of spider capture threads and harvestmen, (6) the droplet retaining hairs of harvestmen, and (7) the miniature suction cups of mites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarpuri G, Chaurasia V, Jain D, Blackledge TA, Dhinojwala A (2015) Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Sci Rep 5:9030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100(19):10603–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature – an overview. Phil Trans R Soc A 367(1893):1445–1486

    Article  CAS  PubMed  Google Scholar 

  • Boesel LF, Greiner C, Arzt E, del Campo A (2010) Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv Mater 22(19):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166

    Article  CAS  Google Scholar 

  • Daltorio KA, Horchler AD, Gorb SN, Ritzmann RE, Quinn RD (2005) A small wall-walking robot with compliant, adhesive feet. In: Proceedings of IEEE international conference on intelligent robots and systems. Edmonton, Canada, pp 4018–4023

    Google Scholar 

  • Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil Trans R Soc Lond 368(1929):4775–4806

    Article  Google Scholar 

  • Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Chem Biol 3(1):100–105

    Article  CAS  PubMed  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209(14):2611–2621

    Article  PubMed  Google Scholar 

  • Flammang P, Santos R (2015) Biological adhesives: from biology to biomimetics. Interface Focus 5:20140086

    Article  PubMed Central  Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Springer Science & Business Media, Dordrecht/Boston/London, 305 pp

    Google Scholar 

  • Gorb SN (2008) Biological attachment devices: exploring nature’s diversity for biomimetics. Phil Trans R Soc 366(1870):1557–1574

    Article  Google Scholar 

  • Gorb S, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21:1175–1183

    Article  CAS  Google Scholar 

  • Gorb S, Varenberg M, Peressadko A, Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4(13):271–275

    Article  CAS  PubMed  Google Scholar 

  • Grafe T, Graham K (2003) Polymeric nanofibers and nanofiber webs: a new class of nonwovens. Nonwoven Technol Rev 12:51–55

    CAS  Google Scholar 

  • Heepe L, Carbone G, Pierro E, Kovalev AE, Gorb SN (2014) Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl Phys Lett 104(1):011906

    Article  Google Scholar 

  • Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T (2015) Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 27(13):2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596

    Article  CAS  Google Scholar 

  • Hennebert E, Maldonado B, Ladurner P, Flammang P, Santos R (2015) Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 5(1):20140064

    Article  PubMed  PubMed Central  Google Scholar 

  • Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C, Werner C (2013) Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater 5(2), e37

    Article  Google Scholar 

  • Hesselberg T (2007) Biomimetics and the case of the remarkable ragworms. Naturwissenschaften 94(8):613–621

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Sahni V, Dhinojwala A (2014) Synthetic adhesive attachment discs inspired by spider’s pyriform silk architecture. J Polym Sci B Polym Phys 52(8):553–560

    Article  CAS  Google Scholar 

  • Kamino K (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol 10(2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Kasem H, Varenberg M (2013) Effect of counterface roughness on adhesion of mushroom-shaped microstructure. J R Soc Interface 10(87):20130620

    Article  PubMed  PubMed Central  Google Scholar 

  • Kästner A (1931) Biologische Beobachtungen an Phalangiiden. Zool Anz 95:293–302

    Google Scholar 

  • Kim S, Sitti M (2006) Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett 89:261911

    Article  Google Scholar 

  • Kinloch A (2012) Adhesion and adhesives: science and technology. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367:1487–1509

    Google Scholar 

  • Li VC (2003) On engineered cementitious composites (ECC): a review of the material and its applications. J Adv Concr Technol 1(3):215–230

    Article  Google Scholar 

  • Nachtigall W (1998) Bionik—Was ist das? Springer Science & Business Media, Berlin, Heidelberg

    Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Article  Google Scholar 

  • Niewiarowski P, Stark AY, Dhinojwala A (2016) Sticking to the story: outstanding challenges in gecko-inspired adhesives. J Exp Biol 219(7):912–919

    Article  PubMed  Google Scholar 

  • Porter D, Vollrath F (2009) Silk as a biomimetic ideal for structural polymers. Adv Mater 21(4):487–492

    Article  CAS  Google Scholar 

  • Pugno NM, Cranford SW, Buehler MJ (2013) Synergetic material and structure optimization yields robust spider web anchorages. Small 9(16):2747–2756

    Article  CAS  PubMed  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  PubMed  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2011a) A review on spider silk adhesion. J Adhes 87(6):595–614

    Article  CAS  Google Scholar 

  • Sahni V, Labhasetwar DV, Dhinojwala A (2011b) Spider silk inspired functional microthreads. Langmuir 28(4):2206–2210

    Article  PubMed  Google Scholar 

  • Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Comm 3:1106

    Article  Google Scholar 

  • Seidl T, Vidoni R (2013) Adhesion to flat surfaces: from spiders to stickers. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin/New York, pp 463–473

    Chapter  Google Scholar 

  • Skeist I (2012) Handbook of adhesives. Springer Science & Business Media, New York

    Google Scholar 

  • Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W (2007) The dream of staying clean: lotus and biomimetic surfaces. Bioinspir Biomim 2(4):S126

    Article  PubMed  Google Scholar 

  • Spolenak R, Gorb S, Gao H, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc A 2054:305–319

    Article  Google Scholar 

  • Varenberg M, Gorb S (2007) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4(15):721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegemann M (2005) Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications. Aquat Sci 67(2):166–176

    Article  CAS  Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Sci Rep 3:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN (2015) Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11(12):2394–2403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Biomimetics: What Can We Learn From Arachnids?. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_11

Download citation

Publish with us

Policies and ethics