Skip to main content

Thermoelectric Generators: A Review of Present and Future Applications

  • Conference paper
  • First Online:
3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015)

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

In the last centuries, men have mainly looked into increasing their production of energy in order to develop their industry, their means of transport and their quality of life. Since the recent energy crisis, researchers and industrials have mainly been looking into managing energy in a better way, especially by increasing the efficiency of energy systems. This context explains the growing interest for thermoelectric generators (TEG). Today, TEGs allow us to collect lost thermal energies, to produce energy in extreme environment, to produce electric power generation in remote areas and to produce micro production for sensors. Direct solar thermal energy can also be used to produce electricity. This review begins with the basic principles of thermoelectricity and with a presentation of existing and future materials. The design and optimisation of generators are tackled. Many recent applications are presented as well as the future applications which are being studied in laboratories or in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. David, M.R.: Chapter 1. Introduction. In: Rowe, D.M. (ed.) CRC Handbook of Thermoelectrics (1995)

    Google Scholar 

  2. Snyder, G.J.: Thermoelectrics handbook macro to nano. In: D.M. Rowe, D.S. (eds.) Thermoelectric Power Generation: Efficiency and Compatibility. CRC Press, New York (2006)

    Google Scholar 

  3. Goldsmid, H.J.: Theory of thermoelectric refrigeration and generation. In: Introduction to Thermoelectricity, pp. 7–21. Springer, Berlin (2010)

    Google Scholar 

  4. TEG-HH-8_module_spec_sheet, http://www.evidentthermo.com/

  5. TEG-HH-15_module_spec_sheet, http://www.evidentthermo.com

  6. Tegma.: http://tegma.no/

  7. tectegcmo-oxide-cmo-cascade-thermoelectric-power-modules, http://tecteg.com/cmo-oxide-cmo-cascade-800c-hot-side-thermoelectric-power-modules/

  8. hotblock onboard

    Google Scholar 

  9. romny-scientific magnesium silicide modules, http://romny-scientific.com

  10. Alphabet Energy’s Thermoelectric Advances - Alphabet Energy, http://www.alphabetenergy.com/thermoelectric-advances/

  11. Green Car Congress.: Alphabet Energy introduces PowerModules for modular thermoelectric waste heat recovery; partnership with Borla for heavy-duty trucks. http://www.greencarcongress.com/2015/06/20150624-alphabet.html

  12. Zhang, Q., Sun, Y., Xu, W., Zhu, D.: Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26, 6829–6851 (2014)

    Article  Google Scholar 

  13. Montecucco, A., Siviter, J., Knox, A.: Simple, fast and accurate maximum power point tracking converter for thermoelectric generators. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2777–2783 (2012)

    Google Scholar 

  14. Maganga, O., Phillip, N., Burnham, K., Montecucco, A., Siviter, J., Knox, A., Simpson, K.: Hardware implementation of maximum power point tracking for thermoelectric generators. J. Electron. Mater. 43, 2293–2300 (2014)

    Article  Google Scholar 

  15. Yu, C., Chau, K.T.: Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers. Manag. 50, 1506–1512 (2009)

    Article  Google Scholar 

  16. Favarel, C., Bédécarrats, J.-P., Kousksou, T., Champier, D.: Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power. Energy 68, 104–116 (2014)

    Article  Google Scholar 

  17. Montecucco, A., Knox, A.R.: Accurate simulation of thermoelectric power generating systems. Appl. Energy 118, 166–172 (2014)

    Article  Google Scholar 

  18. Montecucco, A., Siviter, J., Knox, A.R.: Constant heat characterisation and geometrical optimisation of thermoelectric generators. Appl. Energy 149, 248–258 (2015)

    Article  Google Scholar 

  19. Yee, S.K., LeBlanc, S., Goodson, K.E., Dames, C.: $ per W metrics for thermoelectric power generation: beyond ZT. Energy Env. Sci. 6, 2561–2571 (2013)

    Article  Google Scholar 

  20. Schwartz, L.I.H.J.: Shure: survey of electric power plants for space applications. In: Fifty-Eight National Meeting of the American Institute of Chemical Engineers Philadelphia, Pennsylvania, 5–9 Dec 1965

    Google Scholar 

  21. Voyager, the interstellar mission, http://voyager.jpl.nasa.gov/spacecraft/index.html

  22. Radioisotope Thermoelectric Generator, http://solarsystem.nasa.gov/rps/rtg.cfm

  23. Alimov: Radioisotope Thermoelectric Generators—Bellona. http://bellona.ru/bellona.org/english_import_area/international/russia/navy/northern_fleet/incidents/31772

  24. Welcome to Gentherm Global Power Technologies | Gentherm Global Power Technologies. http://www.genthermglobalpower.com/

  25. Crane, D.: Thermoelectric generator performance for passenger vehicles. In: 3rd Thermoelectrics Applications Workshop. Amerigon, Irwnidale, CA (2012)

    Google Scholar 

  26. Meisner, G.P.: Skutterudite thermoelectric generator for automotive waste heat recovery. In: 3rd Thermoelectrics Applications Workshop 2012 (2012)

    Google Scholar 

  27. Magnetto, D.: HeatReCar : first light commercial vehicle equipped with a TEG. Presented at the 3rd International Conference Thermal Management for EV/HEV, Darmstadt, 24 June 2013

    Google Scholar 

  28. Kousksou, T., Bedecarrats, J.-P., Champier, D., Pignolet, P., Brillet, C.: Numerical study of thermoelectric power generation for an helicopter conical nozzle. J. Power Sources 196, 4026–4032 (2011)

    Article  Google Scholar 

  29. Wallace, T.T.: Development of marine thermoelectric heat recovery systems. In: 3rd Thermoelectrics Applications Workshop (2012)

    Google Scholar 

  30. O’Shaughnessy, S.M., Deasy, M.J., Doyle, J.V., Robinson, A.J.: Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy. Sustain. Dev. 20, 1–10 (2014)

    Article  Google Scholar 

  31. Favarel, C., Champier, D., Kousksou, T., Rozis, J.F., Bédécarrats, J.-P.: thermoelectricity a promising complementary with efficient stoves in off grid areas (2015)

    Google Scholar 

  32. Champier, D., Favarel, C., Bedecarrats, J.P., Kousksou, T., Rozis, J.F.: Prototype combined heater/thermoelectric power generator for remote applications. J. Electron. Mater. 1–12 (2013)

    Google Scholar 

  33. Rinalde, G.F., Juanico, L.E., Taglialavore, E., Gortari, S., Molina, M.G.: Development of thermoelectric generators for electrification of isolated rural homes. Int. J. Hydrog. Energy. 35, 5818–5822 (2010)

    Article  Google Scholar 

  34. biolite. http://biolitestove.com/

  35. Montecucco, A., Siviter, J., Knox, A.R.: A combined heat and power system for solid-fuel stoves using thermoelectric generators. Energy Procedia. 75, 597–602 (2015)

    Article  Google Scholar 

  36. Micropelt: Micropelt thermoelectric generators MPG-D751

    Google Scholar 

  37. nextreme Laird: Microscale Thermal and Power Management, http://www.lairdtech.com/products/thermobility-wpg-1

  38. Samson, D., Otterpohl, T., Kluge, M., Schmid, U., Becker, T.: Aircraft-specific thermoelectric generator module. J. Electron. Mater. 39, 2092–2095 (2010)

    Article  Google Scholar 

  39. Kraemer, D., Poudel, B., Feng, H.-P., Caylor, J.C., Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z., Chen, G.: High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Champier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Champier, D. (2017). Thermoelectric Generators: A Review of Present and Future Applications. In: Oral, A., Bahsi Oral, Z. (eds) 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015). Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-45677-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45677-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45676-8

  • Online ISBN: 978-3-319-45677-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics