Skip to main content

Definitive Surgery for Open Fractures of the Long Bones with External Fixatıon

  • Chapter
  • First Online:
Basic Techniques for Extremity Reconstruction

Abstract

Reconstruction Methods for Fractures with Bone Defects, Vascular Injury, and Salvage Procedures

Management of severely injured extremities remains challenging for orthopedic surgeons. They are associated with higher rates of limb loss in addition to high mortality, secondary amputation, nonunion, infection, multiple surgical interventions, occupational changes, and psychological problems. Patients with high-energy open extremity fractures and massive soft tissue damage pose a demanding clinical challenge that requires a complex interdisciplinary approach and multiple orthopedic, vascular, and reconstructive procedures. Developments in orthopedic fixation, vascular, and soft tissue repair have allowed more severely injured limbs to be salvaged over the last two decades. At the time of emergency presentation, an immediate decision is required regarding limb salvage versus amputation. Various scoring systems using a variety of components have been developed to assist surgeons in making a decision. Open long bone fractures with vascular injury that need vascular reconstruction are classified as Grade 3C open fractures according to the Gustilo-Anderson classification system.

Reconstruction Methods for Fractures wıth Soft Tissue Defects: Acute Angulation Technique

High-energy traumas are always a challenging orthopedic problem. Besides the multi-fragmentation of the bone in high-energy trauma, disruption of the soft tissue coverage makes treatment difficult. The Ilizarov external fixator, which is often used in the treatment of these injuries, is a successful method.

IM Nailing with Cage Technique

Bone defects are frequently encountered in routine orthopedic practice. Surgery, in cases of open fractures, infection, and nonunion, may be complicated by bone loss. Segment transport with external fixators is still the gold standard. Regenerating bone by distraction osteogenesis provides biologic healing of the bone while preserving its original architecture. However, the average time to obtain new load-bearing bone is one and a half months for each centimeter, and the treatment may take quite a long time because the size of the defect increases. Complications encountered throughout the treatment period are numerous and increase with the time spent in the external fixator. Vascularized bone transfers, massive allografts, and metallic implants are other alternative methods of reconstruction, but each method has its own limitations, and orthopedic surgeons still seek new approaches with less patient morbidity. Cylindrical titanium mesh cages for bone defects of the appendicular skeleton have been adopted from postvertebrectomy reconstruction. Hollow titanium mesh cages have been used with success for reconstruction of the corpectomy defects of the vertebra. The first report on the use of titanium mesh cages for the treatment of defective, open fractures of the tibia was published by Cobos et al. in 2002. Since then there have been few additional case reports, and the literature lacks case series with long-term follow-up. The indications, surgical technique, and possible complications will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Reconstruction Methods for Fractures with Bone Defects, Vascular Injury, and Salvage Procedures

  1. Arazi M, Memik R, Ogün TC, Yel M. Ilizarov external fixation for severely comminuted supracondylar and intercondylar fractures of the distal femur. J Bone Joint Surg Br. 2001;83:663–7.

    Article  CAS  PubMed  Google Scholar 

  2. Babiak I, Zakiewicz W, Luterek M. Application of negative-pressure wound therapy in complex therapy of open tibia fractures IIIB and IIIC with massive soft tissue loss. Chir Narzadow Ruchu Ortop Pol. 2011;76:154–60.

    PubMed  Google Scholar 

  3. Bonanni F, Rhodes M, Lucke JF. The futility of predictive scoring of mangled lower extremities. J Trauma. 1993;34:99–104.

    Article  CAS  PubMed  Google Scholar 

  4. Brown KV, Ramasamy A, McLeod J, Stapley S, Clasper JC. Predicting the need for early amputation in ballistic mangled extremity injuries. J Trauma. 2009;66:S93–7. ; discussion S97-8

    Article  PubMed  Google Scholar 

  5. Durham RM, Mistry BM, Mazuski JE, Shapiro M, Jacobs D. Outcome and utility of scoring systems in the management of the mangled extremity. Am J Surg. 1996;172:569–73. ; discussion 573-4

    Article  CAS  PubMed  Google Scholar 

  6. Eger M, Golcman L, Goldstein A, Hirsch M. The use of a temporary shunt in the management of arterial vascular injuries. Surg Gynecol Obstet. 1971;132:67–70.

    CAS  PubMed  Google Scholar 

  7. Flint LM, Richardson JD. Arterial injuries with lower extremity fracture. Surgery. 1983;93:5–8.

    CAS  PubMed  Google Scholar 

  8. Glass GE, Nanchahal J. Improving lower limb salvage following fractures with vascular injury : a systematic review and new management algorithm. J Plast Reconstr Aesthet Surg. 2008;62:571–9.

    Article  Google Scholar 

  9. Gregory RT, Gould RJ, Peclet M, et al. The mangled extremity syndrome (M.E.S.) : a severity grading system for multisystem injury of the extremity. J Trauma. 1985;25:1147–50.

    Article  CAS  PubMed  Google Scholar 

  10. Guerrero A, Gibson K, Kralovich KA, et al. Limb loss following lower extremity arterial trauma : what can be done proactively ? Injury. 2002;33:765–9.

    Article  PubMed  Google Scholar 

  11. Gustilo RB, Gruninger RP, Davis T. Classification of type III (severe) open fractures relative to treatment and results. Orthopedics. 1987;10:1781–8.

    CAS  PubMed  Google Scholar 

  12. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures : a new classification of type III open fractures. J Trauma. 1984;24:742–6.

    Article  CAS  PubMed  Google Scholar 

  13. Helfet DL, Howey T, Sanders R, Johansen K. Limb salvage versus amputation. Preliminary results of the Mangled Extremity Severity Score. Clin Orthop Relat Res. 1990;256:80–6.

    Google Scholar 

  14. Howard PW, Makin GS. Lower limb fractures with associated vascular injury. J Bone Joint Surg Br. 1990;72:116–20.

    CAS  PubMed  Google Scholar 

  15. Howe Jr HR, Poole Jr GV, Hansen KJ, et al. Salvage of lower extremities following combined orthopedic and vascular trauma. A predictive salvage index. Am Surg. 1987;53:205–8.

    PubMed  Google Scholar 

  16. Johansen K, Daines M, Howey T, Helfet D, Hansen Jr ST. Objective criteria accurately predict amputation following lower extremity trauma. J Trauma. 1990;30:568–72. ; discussion 572-3

    Article  CAS  PubMed  Google Scholar 

  17. Johansen K, Lynch K, Paun M, Copass M. Non-invasive vascular tests reliably exclude occult arterial trauma in injured extremities. J Trauma. 1991;31:515–9. ; discussion 519-22

    Article  CAS  PubMed  Google Scholar 

  18. Johnson KD, Hicken G. Distal femoral fractures. Orthop Clin North Am. 1987;18(1):115–32.

    CAS  PubMed  Google Scholar 

  19. Kakagia D, Karadimas E, Drosos G, et al. Vacuum assisted closure downgrades reconstructive demands in high-risk patients with severe lower extremity injuries. Acta Chir Plast. 2009;51:59–64.

    CAS  PubMed  Google Scholar 

  20. Kinoshita Y, Monafo WW. Nerve and muscle blood flow during hindlimb ischemia and reperfusion in rats. J Neurosurg. 1994;80:1078–84.

    Article  CAS  PubMed  Google Scholar 

  21. Labler L, Rancan M, Mica L, et al. Vacuum-assisted closure therapy increases local interleukin-8 and vascular endothelial growth factor levels in traumatic wounds. J Trauma. 2009;66:749–57.

    Article  CAS  PubMed  Google Scholar 

  22. Levy BA, Graves M, Cole P. Screening for extremity arterial injury with the arterial pressure index. Am J Emerg Med. 2005;23:689–95.

    Article  PubMed  Google Scholar 

  23. Ly TV, Travison TG, Castillo RC, Bosse MJ, MacKenzie EJ; LEAP Study Group. Ability of lower-extremity injury severity scores to predict functional outcome after limb salvage. J Bone Joint Surg Am. 2008;90:1738–43.

    Google Scholar 

  24. Lynch K, Johansen K. Can Doppler pressure measurement replace “exclusion” arteriography in the diagnosis of occult extremity arterial trauma ? Ann Surg. 1991;214:737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. MacKenzie EJ, Bosse MJ. Factors influencing outcome following limb-threatening lower limb trauma : lessons learned from the Lower Extremity Assessment Project (LEAP). J Am Acad Orthop Surg. 2006;14:S205–10.

    Article  PubMed  Google Scholar 

  26. Marsh DR, Shah S, Elliott J, Kurdy N. The Ilizarov method in nonunion, malunion and infection of fractures. J Bone Joint Surg Br. 1997;79:273–9.

    Article  CAS  PubMed  Google Scholar 

  27. McNamara MG, Heckman JD, Corley FG. Severe open fractures of the lower extremity : a retrospective evaluation of the Mangled Extremity Severity Score (MESS). J Orthop Trauma. 1994;8:81–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mullenix PS, Steele SR, Andersen CA, et al. Limb salvage and outcomes among patients with traumatic popliteal vascular injury : an analysis of the National Trauma Data Bank. J Vasc Surg. 2006;44:94–100.

    Article  PubMed  Google Scholar 

  29. Reber PU, Patel AG, Sapio NL, et al. Selective use of temporary intravascular shunts in coincident vascular and orthopedic upper and lower limb trauma. J Trauma. 1999;47:72–6.

    Article  CAS  PubMed  Google Scholar 

  30. Rerkasem K, Arworn S, Thepmalai K. Prognostic factors of leg amputation in patients with vascular injury : a systematic review. Int J Low Extrem Wounds. 2006;5:78–82.

    Article  CAS  PubMed  Google Scholar 

  31. Rixen D, Grass G, Sauerland S, et al. Evaluation of criteria for temporary external fixation in risk-adapted damage control orthopedic surgery of femur shaft fractures in multiple trauma patients : “evidence-based medicine” versus “reality” in the trauma registry of the German Trauma Society. J Trauma. 2005;59:1375–94. ; discussion 1394-5

    Article  PubMed  Google Scholar 

  32. Russell WL, Sailors DM, Whittle TB, Fisher Jr DF, Burns RP. Limb salvage versus traumatic amputation. A decision based on a seven-part predictive index. Ann Surg. 1991;213:473–80. ; discussion 480-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seligson D, Ostermann PA, Henry SL, Wolley T. The management of open fractures associated with arterial injury requiring vascular repair. J Trauma. 1994;37:938–40.

    Article  CAS  PubMed  Google Scholar 

  34. Simmons JD, Walker WB, Gunter Iii JW, Ahmed N. Role of endovascular grafts in combined vascular and skeletal injuries of the lower extremity : a preliminary report. Arch Trauma Res. 2013;2:40–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soni A, Tzafetta K, Knight S, Giannoudis PV. Gustilo IIIC fractures in the lower limb : our 15-year experience. J Bone Joint Surg Br. 2012;94:698–703.

    Article  CAS  PubMed  Google Scholar 

  36. Tscherne H, Oestern HJ. A new classification of soft tissue damage in open and closed fractures (author’s transl). Unfallheilkunde. 1982;85:111–5.

    CAS  PubMed  Google Scholar 

  37. Waikakul S, Sakkarnkosol S, Vanadurongwan V. Vascular injuries in compound fractures of the leg with initially adequate circulation. J Bone Joint Surg Br. 1998;80:254–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ware JE, Sherbourne CD. The MOS-36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83.

    Article  PubMed  Google Scholar 

  39. Yeager RA, Hobson RW, Lynch TG, et al. Popliteal and infrapopliteal arterial injuries. Differential management and amputation rates. Am Surg. 1984;50:55–8.

    Google Scholar 

  40. Sen C, Eralp L, Gunes T, Erdem M, Ozden VE, Kocaoglu M. An alternative method for the treatment of nonunion of the tibia with bone loss. J Bone Joint Surg Br. 2006;88:783–9.

    Article  CAS  PubMed  Google Scholar 

  41. Balci HI, Saglam Y, Tunali O, Akgul T, Aksoy M, Dikici F. Grade 3C open femur fractures with vascular repair in adults. Acta Orthop Belg. 2015;81:274–82.

    PubMed  Google Scholar 

  42. Stafford PR, Norris BL. Reamer–irrigator–aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases Injury. Int J Care Injured. 2010;41(S2):S72–7.

    Article  Google Scholar 

Reconstruction Methods for Fractures with Soft Tissue Defects: Acute Angulation Technique

  1. Cierny III G, Zorn KE. Segmental tibial defects. Comparing conventional and Ilizarov methodologies. Clin Orthop Relat Res. 1994;301:118–23.

    Google Scholar 

  2. Dagher F, Roukoz S. Compound tibial fractures with bone loss treated by the Ilizarov technique. JBJS. 1991;73-B:316–21.

    Google Scholar 

  3. Dendrinos GK, Kontos S, Lyritsis E. Use of Ilizarov technique for treatment of non-union of the tibia associated with infection. JBJS. 1995;77-A:835.

    Article  Google Scholar 

  4. Gopal S, Majumder S, Batchelor AG, Knight SL, De Boer P, Smith RM. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br. 2000;82:959–66.

    Article  CAS  PubMed  Google Scholar 

  5. Gulsen M, Ozkan C. Angular shortening and delayed gradual distraction for the treatment of asymmetrical bone and soft tissue defects of tibia: a case series. J Trauma. 2009 May;66(5):E61–6. doi:10.1097/TA.0b013e318031cca8.

    Article  PubMed  Google Scholar 

  6. Lowenberg DW, Feibel RJ, Louie KW, Eshima I. Combined muscle flap and Ilizarov reconstruction for bone and soft tissue defects. Clin Orthop Relat Res. 1996;332:37–5.

    Article  Google Scholar 

  7. Mahaluxmivala J, Nadarajah R, Allen PW, Hill RA. Ilizarov external fixator: acute shortening and lengthening versus bone transport in the management of tibial non-unions Injury. Int J Care Injured. 2005;36:662–8.

    Article  CAS  Google Scholar 

  8. Sen C, Kocaoglu M, Eralp L, et al. Bifocal Compression Distraction in the Acute Treatment of Grade III Open Tibia Fractures With Bone and Soft-Tissue Loss. J Orthop Trauma. 2004;18(3):150–15.

    Article  PubMed  Google Scholar 

  9. Shtarker H, Dawid R, Stolero J, et al. Treatment of open tibia fractures with primary suture and Ilizarov fixation. Clin Orthop. 1997;335:268–74.

    Google Scholar 

  10. Simpson AH, Andrews C, Giele H. Skin closure after acute shortening. J Bone Joint Surg Br. 2001;83:668–71.

    Article  CAS  PubMed  Google Scholar 

  11. Tulner SA, Schaap GR, Strackee SD, Besselaar PP, Luitsee JSK, Marti RK. Long-term results of multiple-stage treatment for posttraumatic osteomyelitis of the tibia. J Trauma. 2004;56:633–42.

    Article  PubMed  Google Scholar 

  12. Watson YT, Anders M, Moed BR. Management strategies for bone loss in tibial shaft fractures. Clin Orthop. 1995;315:138–52.

    Google Scholar 

IM Nailing with Cage Technique

  1. Attias N, Lehman RE, Bodell LS, Lindsey RW. Surgical management of a long segmental defect of the humerus using a cylindrical titanium mesh cage and plates: a case report. J Orthop Trauma. 2005;19(3):211–6.

    Article  PubMed  Google Scholar 

  2. Attias N, Lindsey RW. Case reports: management of large segmental tibial defects using a cylindrical mesh cage. Clin Orthop Relat Res. 2006;450:259–66.

    Article  PubMed  Google Scholar 

  3. Cierny 3rd G, Zorn KE. Segmental tibial defects. Comparing conventional and Ilizarov methodologies. Clin Orthop Relat Res. 1994;301:118–23.

    Google Scholar 

  4. Chmell MJ, McAndrew MP, Thomas R, Schwartz HS. Structural allografts for reconstruction of lower extremity open fractures with 10 centimeters or more of acute segmental defects. J Orthop Trauma. 1995;9(3):222–6.

    Article  CAS  PubMed  Google Scholar 

  5. Cobos JA, Lindsey RW, Gugala Z. The cylindrical titanium mesh cage for treatment of a long bone segmental defect: description of a new technique and report of two cases. J Orthop Trauma. 2000;14(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  6. Dvorak MF, Kwon BK, Fisher CG, Eiserloh 3rd HL, Boyd M, Wing PC. Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection. Spine. 2003;28(9):902–8.

    PubMed  Google Scholar 

  7. Friedrich MJ, Schmolders J, Lob G, Randau TM, Gravius S, Wirtz DC, Pennekamp PH. Intercalary reconstruction for diaphyseal bone defects with a modular replacement system: clinical results. Oper Orthop Traumatol. 2015 Oct;27(5):455–62.

    Article  CAS  PubMed  Google Scholar 

  8. Fujibayashi S, Kim HM, Neo M, Uchida M, Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials. 2003;24(20):3445–51.

    Article  CAS  PubMed  Google Scholar 

  9. Green SA. Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res. 1994;301:111–7.

    Google Scholar 

  10. Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res. 2006;24(7):1438–53.

    Article  CAS  PubMed  Google Scholar 

  11. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction des os longs par membrane induite et autogreffe spongieuse. Ann Chir Plast Esthet. 2000;45:346.

    CAS  PubMed  Google Scholar 

  12. Nusbickel FR, Dell PC, McAndrew MP, Moore MM. Vascularized autografts for reconstruction of skeletal defects following lower extremity trauma. A review. Clin Orthop Relat Res. 1989;243:65–70.

    Google Scholar 

  13. Ostermann PA, Haase N, Rübberdt A, Wich M, Ekkernkamp A. Management of a long segmental defect at the proximal meta-diaphyseal junction of the tibia using a cylindrical titanium mesh cage. J Orthop Trauma. 2002;16(8):597–601.

    Article  PubMed  Google Scholar 

  14. Sen C, Kocaoglu M, Eralp L, Gulsen M, Cinar M. Bifocal compression-distraction in the acute treatment of grade III open tibia fractures with bone and soft-tissue loss: a report of 24 cases. J Orthop Trauma. 2004;18(3):150–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halil Ibrahim Balci MD, FEBOT or Cengiz Şen and MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şen, C., Balci, H.I., Celiktaş, M., Ozkan, C., Gulsen, M. (2018). Definitive Surgery for Open Fractures of the Long Bones with External Fixatıon. In: Çakmak, M., Şen, C., Eralp, L., Balci, H., Civan, M. (eds) Basic Techniques for Extremity Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-319-45675-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45675-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45673-7

  • Online ISBN: 978-3-319-45675-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics