Chronic Osteomyelitis, Biofilm, and Local Antibiosis

  • R. SchnettlerEmail author
  • K. Emara
  • D. Rimashevskij
  • R. Diap
  • A. Emara
  • J. Franke
  • V. Alt


Postoperative and posttraumatic infections of bones, soft tissues, and joints still present a large problem and are among the most serious complications despite huge advances in the field of medicine.

Osteomyelitis is a heterogeneous disease regarding its pathophysiology, clinical presentation, as well as management.

Osteomyelitis basically means inflammation of bone and bone marrow components. This could be of bacterial origin, but may also result from tuberculosis or syphilis and, depending on the immune status of host, may even be of fungal or parasitic (echinococci, toxoplasma ) origin.

Osteomyelitis as a condition may develop as a result of contiguous spread of the infectious organism from adjacent soft tissues and joints, hematogenous seeding by the bloodstream (endogenous), or by direct inoculation and colonization into the bone. The bacteria reach the bones through skin lesions and soft-tissue necroses as a result of trauma or surgery (exogenous). The term osteomyelitis has achieved worldwide acceptance. From a pathologic-anatomical point of view, osteomyelitis can be differentiated into a focal form – referred to as a bone abscess – and one with diffuse spread. As the treatment of bone, soft-tissue, and joint infection has slowly been changing with an evolution and renaissance in understanding the process of managing the infection, the epidemiology of the condition appears to have evolved over time.

Despite the efforts to decrease the incidence of osteomyelitis, the increased survival rates in posttraumatic patients, especially those with extensive injury and bone exposure, have been accompanied by an increased incidence of posttraumatic osteomyelitis. Furthermore, improved life expectancy among elderly patients with diabetes mellitus has resulted in more cases of neuropathy, vascular insufficiency, and the associated local complications of soft-tissue loss, bone destruction, and osteomyelitis (Kremers et al., J Bone Joint Surg Am 97:837–845, 2015; Schnettler and Alt, eptic bone and joint surgery. New York: Thieme Publishing Group; 2010).


  1. 1.
    Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, III M, Joseph L, III H, Paul M. Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg Am. 2015;97:837.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schnettler R, Alt V. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. New York: Thieme Publishing Group; 2010.CrossRefGoogle Scholar
  3. 3.
    Alt V, Schnettler R. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. New York: Thieme Publishing Group; 2010.Google Scholar
  4. 4.
    Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Levine SE, Esterhai JL Jr, Heppenstall RB, Calhoun J, Mader JT. Diagnoses and staging. Osteomyelitis and prosthetic joint infections. Clin Orthop Relat Res. 1993;295:77–86.Google Scholar
  6. 6.
    Berendt AR, Peters EJ, Bakker K, Embil JM, Eneroth M, Hinchliffe RJ, Jeffcoate WJ, Lipsky BA, Senneville E, Teh J, Valk GD. Diabetic foot osteomyelitis: a progress report on diagnosis and a systematic review of treatment. Diabetes Metab Res Rev. 2008;24(Suppl 1):S145–61. Scholar
  7. 7.
    Mahan J, Seligson D, Henry SL, Hynes P, Dobbins J. Factors in pin tract infections. Orthopedics. 1991;14:305–8.PubMedGoogle Scholar
  8. 8.
    Mandell GL, Benett JE, Dolin R, editors. Principles and practice of infectious diseases. 7th ed. Saunders Elsevier; 2009. p. 1457–67.Google Scholar
  9. 9.
    Quie PG, Belani KK. Coagulase-negative staphylococcal adherence and persistence. J Infect Dis. 1987;156:543–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Barth RE, Vogely HC, Hoepelman AIM, Peters EJG. ‘To bead or not to bead?‘treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains. Int J Antimicro Ag. 2011;38:371–5.CrossRefGoogle Scholar
  11. 11.
    Fraunholz M, Sinha B. Intracellular Staphylococcus Aureus: live-in and let die. Front Cell Infect Microbiol. 2012;2:43.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ellington JK, Elhofy A, Bost KL, Hudson MC. Involvement of mitogen-activated protein kinase pathways in Staphylococcus Aureus invasion of normal osteoblasts. Infect Immun. 2001;69:5235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hamza T, Dietz M, Pham D, Clovis N, Danley S, Li B. Intra-cellular Staphylococcus Aureus Alone causes infection in vivo. Eur Cell Mater. 2013;25:341.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mohamed W, Sommer U, Sethi S, Domann E, Thormann U, Schutz I, Lips KS, Chakraborty T, Schnettler R, Alt V. Intracellular proliferation of S. Aureus in osteoblasts and effects of rifampicin and gentamicin on S. Aureus intracellular proliferation and survival. Eur Cell Mater. 2014;28:258–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J. 2000;76:479–83.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Greenberg DP, Bayer AS, Cheung AL, Ward JI. Protective efficacy of protein A-specific antibody against bacteremic infection due to Staphylococcus Aureus in an infant rat model. Infect Immun. 1989;57:1113–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Vaudaux P, François P, Lew DP, Waldvogel FA. Infections associated with indwelling medical devices. 3rd ed. Washington, DC: American Society of Microbiology; 2000. p. 1–26.Google Scholar
  18. 18.
    Gómez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, Cheung A, Prince A. Staphylococcus Aureus protein a induces airway epithelial inflammatory responses by activating TNFR1. Nature med. 2004;10:842.CrossRefPubMedGoogle Scholar
  19. 19.
    Gómez MI, O’Seaghdha M, Magargee M, Foster TJ, Prince AS. Staphylococcus Aureus protein a activates TNFR1 signaling through conserved IgG binding domains. J Biol Chem. 2006;281:20190–6.Google Scholar
  20. 20.
    Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW. Staphylococcus Aureus protein a plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One. 2012;7:e40586.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bjarnsholt T. In Biofilm infections. Springer; 2011. p.1–9.Google Scholar
  22. 22.
    Mah T-F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7:1061–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas Aeruginosa biofilms. PLoS Pathog. 2008;4:e1000213. Scholar
  24. 24.
    Chiang WC, Nilsson M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. Extracellular DNA shields against aminoglycosides in Pseudomonas Aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57:2352–61. Scholar
  25. 25.
    Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33. Scholar
  26. 26.
    Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013:1–51.
  27. 27.
    Chen L, Wen YM. The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci. 2011;3:66–73. Scholar
  28. 28.
    Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364:369–79. Scholar
  29. 29.
    Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305–11. Scholar
  30. 30.
    Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. Pathog Dis. 2008;52:13–22.Google Scholar
  31. 31.
    Kos M, Junka A, Smutnicka D, Szymczyk P, Gluza K, Bartoszewicz M. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite. J Cranio-Maxillofac Surg. 2015;43:863–9.CrossRefGoogle Scholar
  32. 32.
    Simon C, Stille W. Antibiotika-Therapie in Klinik und Praxis: mit 93 Tabellen. Schattauer; 1997.Google Scholar
  33. 33.
    Gentry LO. Osteomyelitis: options for diagnosis and management. J Antimicrob Chemother. 1988;21:115–28.CrossRefPubMedGoogle Scholar
  34. 34.
    Cierny G 3rd, Mader JT. Approach to adult osteomyelitis. Orthop Rev. 1987;16:259–70.PubMedGoogle Scholar
  35. 35.
    Schnettler R, Lieser H, Klemm K. Surgical treatment of the chronic osteomyelitis following trauma. Aktuelle Chirurgie. 1997;32:18–22.Google Scholar
  36. 36.
    Klemm KW. Antibiotic bead chains. Clin Orthop Relat Res. 1993;295:63–76.Google Scholar
  37. 37.
    Klemm K. Proceedings: internal fixation of infected pseudarthroses with the interlocking nail (author’s transl). Langenbeck’s Arch Surg. 1973;334:559.Google Scholar
  38. 38.
    Klemm K, Schnettler R. The use of gentamicin-PMMA chains in the treatment of infected tibial nonunion. Acta Orthop Belg. 1992;58:222–6.PubMedGoogle Scholar
  39. 39.
    Waldvogel FA, Medoff G, Swartz MN. Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects. N Engl J Med. 1970;282:198–206.CrossRefPubMedGoogle Scholar
  40. 40.
    Kraus R, Schiefer U, Schnettler R. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. New York: Thieme Publishing Group; 2010.Google Scholar
  41. 41.
    Waldvogel FA, Vasey H. Osteomyelitis: the past decade. N Engl J Med. 1980;303:360–70.CrossRefPubMedGoogle Scholar
  42. 42.
    David R, Barron BJ, Madewell JE. Osteomyelitis, acute and chronic. Radiol Clin N Am. 1987;25:1171–201.PubMedGoogle Scholar
  43. 43.
    Cierny G 3rd, Mader JT, Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. 2003:7–24.
  44. 44.
    In Seminars in plastic surgery. 059–072 (© Thieme Medical Publishers).Google Scholar
  45. 45.
    Saavedra-Lozano J, Mejías A, Ahmad N, Peromingo E, Ardura MI, Guillen S, Syed A, Cavuoti D, Ramilo O. Changing trends in acute osteomyelitis in children: impact of methicillin-resistant Staphylococcus Aureus infections. J Pediatr Orthop. 2008;28:569–75.CrossRefPubMedGoogle Scholar
  46. 46.
    Perry CR, Pearson RL, Miller GA. Accuracy of cultures of material from swabbing of the superficial aspect of the wound and needle biopsy in the preoperative assessment of osteomyelitis. J Bone Joint Surg Am. 1991;73:745–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Mader JT, Landon GC, Calhoun J. Antimicrobial treatment of osteomyelitis. Clin Orthop Relat Res. 1993;295:87–95.Google Scholar
  48. 48.
    Haas DW, McAndrew MP. Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med. 1996;101:550–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Senneville E, Melliez H, Beltrand E, Legout L, Valette M, Cazaubie M, Cordonnier M, Caillaux M, Yazdanpanah Y, Mouton Y. Culture of percutaneous bone biopsy specimens for diagnosis of diabetic foot osteomyelitis: concordance with ulcer swab cultures. Clin Infect Dis. 2006;42:57–62.CrossRefPubMedGoogle Scholar
  50. 50.
    Kroetz M, Linsenmaier U, Reiser M. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. New York: Thieme Publishing Group; 2010.Google Scholar
  51. 51.
    Modic MT, Pflanze W, Feiglin DH, Belhobek G. Magnetic resonance imaging of musculoskeletal infections. Radiol Clin N Am. 1986;24:247–58.PubMedGoogle Scholar
  52. 52.
    In Seminars in plastic surgery. 080–089 (© Thieme Medical Publishers).Google Scholar
  53. 53.
    Adams S, Hoer G. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. New York: Thieme Publishing Group; 2010.Google Scholar
  54. 54.
    Pineda C, Vargas A, Rodríguez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin N Am. 2006;20:789–825.CrossRefGoogle Scholar
  55. 55.
    Klemm KW. Gentamicin-PMMA chains (Septopal chains) for the local antibiotic treatment of chronic osteomyelitis. Reconstr Surg Traumatol. 1988;20:11.PubMedGoogle Scholar
  56. 56.
    Heppert V, Wagner C, Glatzel U, Wentzensen A. Principles of surgical osteitis therapy. Trauma Berufsk. 2002;4:321–8.CrossRefGoogle Scholar
  57. 57.
    Suger G, Opuni S, Kramer M, Kinzl L. Reconstruction vs amputation: decision making in chronic post-traumatic osteomyelitis. Trauma Berufsk. 2002;4:329–33.CrossRefGoogle Scholar
  58. 58.
    Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1993;295:37–42.Google Scholar
  59. 59.
    Klemm K. Treatment of chronic bone infection with gentamicin-PMMA chains and beads. Accident Surg. 1976;16:5–7.Google Scholar
  60. 60.
    Blaha JD, Calhoun JH, Nelson CL, Henry SL, Seligson D, Esterhai JL Jr, Heppenstall RB, Mader J, Evans RP, Wilkins J. Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Relat Res. 1993;295:8–12.Google Scholar
  61. 61.
    Calhoun JH, Anger DM, Ledbetter BR, Cobos JA, Mader JT. The Ilizarov fixator and polymethylmethacrylate-antibiotic beads for the treatment of infected deformities. Clin Orthop Relat Res. 1993;295:13–22.Google Scholar
  62. 62.
    Schmidt HGK. In: Steinau H-U, Schnettler R, editors. Septic bone and joint surgery. Thieme Publishing Group; 2010.Google Scholar
  63. 63.
    Calhoun JH, Henry SL, Anger DM, Cobos JA, Mader JT. The treatment of infected nonunions with gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res. 1993;295:23–7.Google Scholar
  64. 64.
    Simpson AHRW, Deakin M, Latham JM. Chronic osteomyelitis. Bone Joint J. 2001;83:403–7.CrossRefGoogle Scholar
  65. 65.
    Henry SL, Hood GA, Seligson D. Long-term implantation of gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res. 1993;295:47–53.Google Scholar
  66. 66.
    Dabov GD. Chronic osteomyelitis. Campbell’s Operative Orthopaedics. 11th ed. Philadelphia: Mosby; 2008. p. 704–5.Google Scholar
  67. 67.
    Gristina AG, Naylor PT, Myrvik Q. The race for the surface: microbes, tissue cells, and biomaterials. Mol Mech Microbial Adh. 1989:177–211.Google Scholar
  68. 68.
    In Mayo clinic proceedings. 156–167 (Elsevier).Google Scholar
  69. 69.
    Claessens J, Roriz M, Merckx R, Baatsen P, Van Mellaert L, Van Eldere J. Inefficacy of vancomycin and teicoplanin in eradicating and killing Staphylococcus Epidermidis biofilms in vitro. Int J Antimicro Ag. 2015;45:368–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  • R. Schnettler
    • 1
    Email author
  • K. Emara
    • 2
  • D. Rimashevskij
    • 3
  • R. Diap
    • 2
  • A. Emara
    • 2
  • J. Franke
    • 4
  • V. Alt
    • 1
  1. 1.Justus-Liebig-University GiessenGiessenGermany
  2. 2.Ain Shams University KairoCairoEgypt
  3. 3.Scientific Research Institute of Traumatology and Orthopedics, Healthcare Ministry of Republic of KazakhstanAstanaKazakhstan
  4. 4.Elbeklinikum StadeStadeGermany

Personalised recommendations