Skip to main content

Liquid Phase TEM Investigations of Crystal Nucleation, Growth, and Transformation

  • Chapter
  • First Online:
New Perspectives on Mineral Nucleation and Growth

Abstract

The scarcity of high-resolution, in situ tools has left many fundamental questions regarding crystallization processes unanswered. Recent years have seen many advances in transmission electron microscopy (TEM) approaches that allow TEM observations of liquid environments. These liquid phase TEM techniques provide an in situ platform for investigating the early events in materials formation and understanding the mechanisms by which crystals develop. In this chapter, we provide an overview of the liquid phase TEM experimental platforms and discuss recent studies that use the technique to address open questions in crystallization. We first highlight liquid phase TEM investigations into the calcium carbonate system, where the technique provides insights into the formation pathways that take the mineral from its solvated state to one of various solid phases and the effect that an organic additive can have on such processes. In the following section, we discuss studies of metal nanoparticle formation that investigate the mechanisms of nucleation and growth from a precursor solution, as well as the development into faceted nanocrystals in the presence of an organic ligand. We close the chapter with a discussion of areas for future development that would broaden the utility of liquid phase TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc Natl Acad Sci U S A 84(9):2732–2736. doi:10.1073/pnas.84.9.2732

    Article  Google Scholar 

  • Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci 98(22):12468–12472. doi:10.1073/pnas.211400898

    Article  Google Scholar 

  • Andreassen JP, Beck R, Nergaard M (2012) Biomimetic type morphologies of calcium carbonate grown in absence of additives. Faraday Discuss 159:247–261. doi:10.1039/c2fd20056b

    Article  Google Scholar 

  • Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk N, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314. doi:10.1038/nmat3558

    Article  Google Scholar 

  • Bewernitz MA, Gebauer D, Long J, Cölfen H, Gower LB (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312. doi:10.1039/c2fd20080e

    Article  Google Scholar 

  • Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S (2012) Mechanistic insights into the crystallization of Amorphous Calcium Carbonate (ACC). Cryst Growth Des 12(7):3806–3814. doi:10.1021/cg300676b

    Article  Google Scholar 

  • Brecevic L, Nielsen AE (1989) Solubility of amorphous calcium carbonate. J Cryst Growth 98(3):504–510. doi:10.1016/0022-0248(89)90168-1

    Article  Google Scholar 

  • Birkedal H (2017) Phase transformations in calcium phosphate crystallization. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth: from solution precursors to solid materials. Springer, Cham, pp 199–210

    Google Scholar 

  • Brooks R, Clark LM, Thurston EF (1950) Calcium carbonate and its hydrates. Philos Trans R Soc London Ser A Math Phys Sci 243(861):145–167. doi:10.1098/rsta.1950.0016

    Article  Google Scholar 

  • Cardew PT, Davey RJ (1985) The kinetics of solvent-mediated phase transformations. Proc R Soc London Ser A-Math Phys Eng Sci 398(1815):415–428

    Article  Google Scholar 

  • Chernov AA (1984) Modern crystallography III, vol 36, Springer series in solid-state sciences. Springer, Berlin

    Google Scholar 

  • De Yoreo JJ, Sommerdijk NAJM, Dove PM (2017) Nucleation pathways in electrolyte solutions. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 1–24

    Google Scholar 

  • Delgado-López JM, Guagliardi A (2017) Control over nanocrystalline apatite formation: what can the X-ray total scattering approach tell us. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 211–226

    Google Scholar 

  • Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590. doi:10.1038/ncomms1604

    Article  Google Scholar 

  • Evans JE, Jungjohann KL, Wong PCK, Chiu P-L, Dutrow GH, Arslan I, Browning ND (2012) Visualizing macromolecular complexes with In Situ liquid scanning transmission electron microscopy. Micron 43(11):1085–1090. doi:10.1016/j.micron.2012.01.018

    Article  Google Scholar 

  • Falini G, Fermani S (2017) Nucleation and growth from a biomineralization perspective. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 185–198

    Google Scholar 

  • Fang PA, Conway JF, Margolis HC, Simmer JP, Beniash E (2011) Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc Natl Acad Sci U S A 108(34):14097–14102. doi:10.1073/pnas.1106228108

    Article  Google Scholar 

  • Fernandez-Martinez A, Lopez-Martinez H, Wang D (2017) Structural characteristics and the occurrence of polyamorphism in amorphous calcium carbonate. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 77–92

    Google Scholar 

  • Frandsen C, Legg BA, Comolli LR, Zhang HZ, Gilbert B, Johnson E, Banfield JF (2014) Aggregation-induced growth and transformation of Beta-FeOOH nanorods to micron-sized Alpha-Fe2O3 spindles. CrystEngComm 16(8):1451–1458. doi:10.1039/c3ce40983j

    Article  Google Scholar 

  • Gal A, Habraken W, Gur D, Fratzl P, Weiner S, Addadi L (2013) Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew Chem Int Ed 52(18):4867–4870. doi:10.1002/anie.201210329

    Article  Google Scholar 

  • Galkin O, Chen K, Nagel RL, Hirsch RE, Vekilov PG (2002) Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc Natl Acad Sci U S A 99(13):8479–8483. doi:10.1073/pnas.122055299

    Article  Google Scholar 

  • Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322(5909):1819–1822. doi:10.1126/science.1164271

    Article  Google Scholar 

  • Gebauer D, Gunawidjaja PN, Ko JYP, Bacsik Z, Aziz B, Liu LJ, Hu YF, Bergström L, Tai CW, Sham TK, Eden M, Hedin N (2010) Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew Chem-Int Ed 49(47):8889–8891. doi:10.1002/anie.201003220

    Article  Google Scholar 

  • Gehrke N, Cölfen H, Pinna N, Antonietti M, Nassif N (2005) Superstructure of calcium carbonate crystals by oriented attachment. Cryst Growth Des 5(4):1317–1319. doi:10.1021/cg050051d

  • Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3:108–248

    Google Scholar 

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 3:343–524

    Google Scholar 

  • Giuffre AJ, Hamm LM, Han N, De Yoreo JJ, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci 110(23):9261–9266. doi:10.1073/pnas.1222162110

    Article  Google Scholar 

  • Grogan JM, Bau HH (2010) The nanoaquarium: a platform for In Situ transmission electron microscopy in liquid media. J Microelectromech Syst 19(4):885–894. doi:10.1109/jmems.2010.2051321

    Article  Google Scholar 

  • Grogan JM, Schneider NM, Ross FM, Bau HH (2014) Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 14(1):359–364. doi:10.1021/nl404169a

    Article  Google Scholar 

  • Habraken W, Tao JH, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, van der Schoot P, Aichmayer B, de With G, DeYoreo JJ, Sommerdijk N (2013) Ion-association complexes unite classical and Non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507. doi:10.1038/ncomms2490

    Article  Google Scholar 

  • Hamm LM, Giuffre AJ, Han N, Tao J, Wang D, De Yoreo JJ, Dove PM (2014) Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc Natl Acad Sci 111(4):1304–1309. doi:10.1073/pnas.1312369111

    Article  Google Scholar 

  • Hu Q, Nielsen MH, Freeman CL, Hamm LM, Tao J, Lee JRI, Han TYJ, Becker U, Harding JH, Dove PM, De Yoreo JJ (2012) The thermodynamics of calcite nucleation at organic interfaces: classical vs. Non-classical pathways. Faraday Discuss 159:509–523. doi:10.1039/c2fd20124k

    Article  Google Scholar 

  • Johnston J, Merwin HE, Williamson ED (1916) The several forms of calcium carbonate. Am J Sci 41(246):473–512

    Article  Google Scholar 

  • Koga N, Yamane Y (2008) Thermal behaviors of amorphous calcium carbonates prepared in aqueous and ethanol media. J Therm Anal Calorim 94(2):379–387. doi:10.1007/s10973-008-9110-3

    Article  Google Scholar 

  • Krauss F, Schriever W (1930) The hydrates of calcium carbonate. Zeitschrift Fur Anorganische Und Allgemeine Chemie 188(1):259–260. doi:10.1002/zaac.19301880122

    Article  Google Scholar 

  • Lee JRI, Han TYJ, Willey TM, Wang D, Meulenberg RW, Nilsson J, Dove PM, Terminello LJ, van Buuren T, De Yoreo JJ (2007) Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. J Am Chem Soc 129(34):10370–10381. doi:10.1021/ja071535w

    Article  Google Scholar 

  • Li DS, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084):1014–1018. doi:10.1126/science.1219643

    Article  Google Scholar 

  • Liao H-G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L-W, Zheng H (2014) Facet development during platinum nanocube growth. Science 345(6199):916–919. doi:10.1126/science.1253149

    Article  Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50. doi:10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365(6446):499–505. doi:10.1038/365499a0

    Article  Google Scholar 

  • Marsh ME (1994) Polyanion-mediated mineralization – assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177(3–4):108–122. doi:10.1007/bf01378985

    Article  Google Scholar 

  • Nielsen MH, De Yoreo JJ (2016) Liquid cell TEM for studying environmental and biological mineral systems. In: Ross FM (ed) Liquid cell electron microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Nielsen MH, Lee JRI, Hu QN, Han TYJ, De Yoreo JJ (2012) Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss 159:105–121. doi:10.1039/c2fd20050c

    Article  Google Scholar 

  • Nielsen MH, Li DS, Zhang HZ, Aloni S, Han TYJ, Frandsen C, Seto J, Banfield JF, Cölfen H, De Yoreo JJ (2014a) Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc Microanal 20(2):425–436. doi:10.1017/s1431927614000294

    Article  Google Scholar 

  • Nielsen MH, Aloni S, De Yoreo JJ (2014b) In Situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345(6201):1158–1162. doi:10.1126/science.1254051

    Article  Google Scholar 

  • Nudelman F, Gotliv BA, Addadi L, Weiner S (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J Struct Biol 153(2):176–187. doi:10.1016/j.jsb.2005.09.009

    Article  Google Scholar 

  • Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk N (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009. doi:10.1038/nmat2875

    Article  Google Scholar 

  • Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108(34):12707–12712. doi:10.1021/jp036490+

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998a) Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2. Am Mineral 83(9–10):1077–1082

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998b) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281(5379):969–971. doi:10.1126/science.281.5379.969

    Article  Google Scholar 

  • Penn RL, Li D, Soltis JA (2017) A perspective on the particle-based crystal growth of ferric oxides, oxyhydroxides, and hydrous oxides. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 257–274

    Google Scholar 

  • Pouget EM, Bomans PHH, Goos JACM, Frederik PM, de With G, Sommerdijk NAJM (2009) The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323(5920):1555–1458. doi:10.1126/science.1169434

    Article  Google Scholar 

  • Radha AV, Forbes TZ, Killian CE, Gilbert P, Navrotsky A (2010) Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc Natl Acad Sci U S A 107(38):16438–16443. doi:10.1073/pnas.1009959107

    Article  Google Scholar 

  • Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 155–184

    Google Scholar 

  • Reichel V, Faivre D (2017) Magnetite nucleation and growth. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 275–292

    Google Scholar 

  • Rieger J, Thieme J, Schmidt C (2000) Study of precipitation reactions by X-ray microscopy: CaCO3 precipitation and the effect of polycarboxylates. Langmuir 16(22):8300–8305. doi:10.1021/la0004193

    Article  Google Scholar 

  • Rieger J, Frechen T, Cox G, Heckmann W, Schmidt C, Thieme J (2007) Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss 136:265–277. doi:10.1039/b701450c

    Article  Google Scholar 

  • Ring EA, de Jonge N (2010) Microfluidic system for transmission electron microscopy. Microsc Microanal 16(5):622–629. doi:10.1017/s1431927610093669

    Article  Google Scholar 

  • Rodriguez-Blanco JG, Sand KK, Benning LG (2017) ACC and vaterite as intermediates in the solution-based crystallization of CaCO3. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 93–112

    Google Scholar 

  • Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH (2014) Electron-water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118(38):22373–22382. doi:10.1021/jp507400n

    Article  Google Scholar 

  • Sleutel M, Lutsko J, Van Driessche AES, Duran-Olivencia MA, Maes D (2014) Observing classical nucleation theory at work by monitoring phase transitions with molecular precision. Nat Commun 5:5598. doi:10.1038/ncomms6598

    Article  Google Scholar 

  • Smeets PJM, Cho KR, Kempen RGE, Sommerdijk NAJM, De Yoreo JJ (2015) Calcium carbonate nucleation driven by Ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat Mater 14:394–399. doi:10.1038/nmat4193

    Article  Google Scholar 

  • Tester CC, Brock RE, Wu CH, Krejci MR, Weigand S, Joester D (2011) In Vitro synthesis and stabilization of Amorphous Calcium Carbonate (ACC) nanoparticles within liposomes. CrystEngComm 13(12):3975–3978. doi:10.1039/c1ce05153a

    Article  Google Scholar 

  • Trotsenko O, Roiter Y, Minko S (2012) Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. Langmuir 28(14):6037–6044. doi:10.1021/la300584k

    Article  Google Scholar 

  • Verch A, Morrison IEG, van de Locht R, Kroger R (2013) In Situ electron microscopy studies of calcium carbonate precipitation from aqueous solution with and without organic additives. J Struct Biol 183(2):270–277. doi:10.1016/j.jsb.2013.05.017

    Article  Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1–2):231–252. doi:10.1007/bf01017860

    Article  Google Scholar 

  • Wagner C (1961) Theorie der Alterung von Niederschlagen durch Umlosen (Ostwald-Reifung). Z Elektrochem 65(7–8):581–591

    Google Scholar 

  • Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, Whitelam S, Banfield JF, De Yoreo JJ (2013) Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341(6148):885–889. doi:10.1126/science.1230915

    Article  Google Scholar 

  • Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8):532–536. doi:10.1038/nmat944

    Article  Google Scholar 

  • Woehl TJ, Evans JE, Arslan L, Ristenpart WD, Browning ND (2012) Direct in Situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10):8599–8610. doi:10.1021/nn303371y

    Article  Google Scholar 

  • Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND (2013) Experimental procedures to mitigate electron beam induced artifacts during In Situ fluid imaging of nanomaterials. Ultramicroscopy 127:53–63. doi:10.1016/j.ultramic.2012.07.018

    Article  Google Scholar 

  • Wolf SE, Gower LB (2017) Challenges and perspectives of the polymer-induced liquid-precursor process: the pathway from liquid-condensed mineral precursors to mesocrystalline products. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 43–76

    Google Scholar 

  • Wulff G (1901) On the question of speed of growth and dissolution of crystal surfaces. Zeitschrift für Krystallographie und Mineralogie 34(5/6):449–530

    Google Scholar 

  • Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437(7059):664–670. doi:10.1038/nature04165

    Article  Google Scholar 

  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077):61–64. doi:10.1126/science.1217654

    Article  Google Scholar 

  • Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932):1309–1312. doi:10.1126/science.1172104

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Science Foundation under grant DMR-1312697. Additional support for this work was provided by the Laboratory Directed Research and Development Initiative on Materials Synthesis and Simulation Across Scales at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. Work conducted at LLNL was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA20344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nielsen, M.H., De Yoreo, J.J. (2017). Liquid Phase TEM Investigations of Crystal Nucleation, Growth, and Transformation. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_18

Download citation

Publish with us

Policies and ethics