Skip to main content

Control Over Nanocrystalline Apatite Formation: What Can the X-Ray Total Scattering Approach Tell Us

  • Chapter
  • First Online:
New Perspectives on Mineral Nucleation and Growth

Abstract

Living organisms are able to induce and control the nucleation and crystallization of a wide variety of minerals. Vertebrates use calcium phosphates to build their mineral phases in hard tissues (i.e. bone, dentin and tooth enamel) and in pathological deposits (e.g. dental and urinary calculus and stones, atherosclerotic lesions). Understanding how organisms form their extremely specialized mineralized structures and the in vivo mechanisms enabling their control over crystal morphology, size and polymorphism and, ultimately, over functional properties is particularly important. Nevertheless, these systems are usually complex hybrids very difficult to be fully characterized. Bone is one of the most studied mineralized tissues, although many important aspects of its sophisticated mineralization process need further investigations. In this chapter, we highlight the role of citrate in driving the formation of platy-shaped bio-inspired apatite. Recent solid-state nuclear magnetic resonance (NMR) studies evidenced that citrate, which accounts for ~5.5 % wt of the total organic component of bone, is strongly bound to bone apatite platelets. Thus, we also discuss the possible role of citrate in inducing the typical platelike morphology of bone apatite. Furthermore, the chapter aims at highlighting the strength of X-ray total scattering for characterizing nanocrystalline apatites in terms of crystal structure and defects, stoichiometry (i.e. Ca/P ratio), size and morphology. Future perspectives on the use of time-resolved experiments and combination of complementary advanced techniques are briefly outlined aiming to enhance the fundamental knowledge of bone biomineralization at atomic and nanometre length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem Suppl 30–31:83–91

    Article  Google Scholar 

  • Buckley K, Matousek P, Parker AW, Goodship AE (2012) Raman spectroscopy reveals differences in collagen secondary structure which relate to the levels of mineralisation in bones that have evolved for different functions. J Raman Spectrosc 43:1237–1243

    Google Scholar 

  • Cernuto G, Masciocchi N, Cervellino A, Colonna GM, Guagliardi A (2011) Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering debye function study. J Am Chem Soc 133:3114–3119

    Article  Google Scholar 

  • Cervellino A, Giannini C, Guagliardi A (2006) On the efficient evaluation of Fourier patterns for nanoparticles and clusters. J Comput Chem 27:995–1008

    Article  Google Scholar 

  • Cervellino A, Giannini C, Guagliardi A (2010) Debussy: a Debye user system for nanocrystalline materials. J Appl Crystallogr 43:1543–1547

    Article  Google Scholar 

  • Cervellino A, Frison R, Cernuto G, Guagliardi A (2012) Debye function analysis: theoretical and experimental aspects. In: Guagliardi A, Masciocchi N (eds) Crystallography for health and biosciences. IUP, Varese

    Google Scholar 

  • Cervellino A, Frison R, Bertolotti F, Guagliardi A (2015) Debussy 2.0 – the new release of a Debye user system for nanocrystalline and/or disordered materials. J Appl Crystallogr 48:2026–2032

    Article  Google Scholar 

  • Cisneros DA, Hung C, Franz CM, Muller DJ (2006) Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154:232–245

    Article  Google Scholar 

  • Davies E, Müller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MJ (2014) Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci 111:E1354–E1363

    Article  Google Scholar 

  • Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys 351:809–823

    Article  Google Scholar 

  • Delgado-López JM, Iafisco M, Rodríguez I, Tampieri A, Prat M, Gómez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8:3491–3499

    Article  Google Scholar 

  • Delgado-López JM, Rodríguez-Ruiz I, Durán-Olivencia MA, Iafisco M, Tampieri A, Colangelo D, Prat M, Gómez-Morales J (2013) pH-responsive delivery of doxorubicin from citrate–apatite nanocrystals with tailored carbonate content. Langmuir 29:8213–8221

    Article  Google Scholar 

  • Delgado-López JM, Frison R, Cervellino A, Gómez-Morales J, Guagliardi A, Masciocchi N (2014) Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv Funct Mater 24:1090–1099

    Article  Google Scholar 

  • Delgado-López JM, Bertolotti F, Lyngs⊘ J, Pedersen JS, Cervellino A, Masciocchi N, Guagliardi A (2016) The synergic role of collagen and citrate in stabilizing amorphous calcium phosphate precursors with platy morphology. Acta Biomater in press. doi:10.1016/j.actbio.2016.11.041

  • Dey A, de With G, Sommerdijk NAJM (2010) In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem Soc Rev 39:397–409

    Article  Google Scholar 

  • Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734

    Article  Google Scholar 

  • Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. Biomed Res Int 2013:1–12

    Article  Google Scholar 

  • Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180:1055–1057

    Article  Google Scholar 

  • Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034

    Article  Google Scholar 

  • Falini G, Fermani S (2017) Nucleation and growth from a biomineralization perspective. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 185–198

    Google Scholar 

  • Fratzl P (2005) Hierarchical structure and mechanical adaptation of biological materials. In: Reis RL, Weiner S (eds) Learning from nature how to design new implantable biomaterials: from biomineralization fundamentals to biomimetic materials and processing routes. Springer, Dordrecht

    Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Article  Google Scholar 

  • Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-Ray scattering. Connect Tissue Res 34:247–254

    Article  Google Scholar 

  • Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  Google Scholar 

  • Frison R, Cernuto G, Cervellino A, Zaharko O, Colonna GM, Guagliardi A, Masciocchi N (2013) Magnetite–maghemite nanoparticles in the 5–15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mater 25:4820–4827

    Article  Google Scholar 

  • George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108:4670–4693

    Article  Google Scholar 

  • Glimcher MJ, Muir H (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds [and discussion]. Philos Trans R Soc Lond Ser B Biol Sci 304:479–508

    Article  Google Scholar 

  • Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46

    Article  Google Scholar 

  • Hartles RL (1964) Citrate in mineralized tissues. Adv Oral Biol 1:225–253

    Article  Google Scholar 

  • Hodge AJ, Petruska JA (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York

    Google Scholar 

  • Hu YY, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 107:22425–22429

    Article  Google Scholar 

  • Hu YY, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K (2011) Biomimetic self-assembling copolymer-hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater 23:2481–2490

    Article  Google Scholar 

  • Iafisco M, Delgado-López JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, Prat M (2013) Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 9:3834–3844

    Article  Google Scholar 

  • Iafisco M, Ramirez-Rodriguez GB, Sakhno Y, Tampieri A, Martra G, Gomez-Morales J, Delgado-Lopez JM (2015) The growth mechanism of apatite nanocrystals assisted by citrate: relevance to bone biomineralization. CrystEngComm 17:507–511

    Article  Google Scholar 

  • Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  • Landis W, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93:329–337

    Article  Google Scholar 

  • Lazic S (1995) Microcrystalline hydroxyapatite formation from alkaline solutions. J Cryst Growth 147:147–154

    Article  Google Scholar 

  • Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342

    Article  Google Scholar 

  • Leventouri T, Bunaciu CE, Perdikatsis V (2003) Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials 24:4205–4211

    Article  Google Scholar 

  • López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci 107:6316–6321

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  • Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk N (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  Google Scholar 

  • Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116

    Article  Google Scholar 

  • Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783

    Article  Google Scholar 

  • Ramírez-Rodríguez GB, Delgado-López JM, Gómez-Morales J (2013) Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy. CrystEngComm 15:2206–2212

    Article  Google Scholar 

  • Ren D, Kratz F, Wang S-W (2011) Protein nanocapsules containing doxorubicin as a pH-responsive delivery system. Small 7:1051–1060

    Article  Google Scholar 

  • Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C Biomimetic Supramol Syst 27:198–205

    Article  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  Google Scholar 

  • Sanchez C, Arribart H, Giraud Guille MM (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  Google Scholar 

  • Tao J, Pan H, Zeng Y, Xu X, Tang R (2007) Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B 111:13410–13418

    Article  Google Scholar 

  • Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  Google Scholar 

  • Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille M-M, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724–733

    Article  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

  • Xie B, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci 107:22369–22370

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Delgado-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delgado-López, J.M., Guagliardi, A. (2017). Control Over Nanocrystalline Apatite Formation: What Can the X-Ray Total Scattering Approach Tell Us. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_11

Download citation

Publish with us

Policies and ethics