Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 847 Accesses

Abstract

In this chapter two velocity-based finite element formulations for compressible materials are presented, namely the Velocity (V) and the mixed Velocity–Pressure (VP) formulations. For both schemes the linear momentum equations are solved iteratively for the velocity increments. The linearization of the governing equations is performed without specifying any constitutive law. The aim of this chapter is to maintain as much as possible the generality of the algorithms, leaving the formulations open to different material models. It will be shown that the only requirement demanded to the constitutive laws is that the rate of stress must be linearly related with the rate of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Belytschko, W.K. Liu, B. Moran, and K.I. Elkhodadry. Nonlinear Finite Elements For Continua And Structures. Second Edition. John Wiley & Sons, New York, 2014.

    Google Scholar 

  2. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Its Basis and Fundamentals. (6th Ed.). Elsevier Butterworth-Heinemann, Oxford, 2005.

    Google Scholar 

  3. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Série rouge. Analyse numérique, 8 (R-2):129–151, 1974.

    Google Scholar 

  4. C. Truesdell. Hypo-elasticity. Journal of Rational Mechanics and Analysis, 4,1, 1955.

    Google Scholar 

  5. C. Truesdell. Remarks on hypo-elasticity. Journal of research of the National Bureau of Standards - B. Mathematics and Mathematical Physics, 67B (3):141–143, 1963.

    Google Scholar 

  6. C. Truesdell. The simplest rate theory of pure elasticity. Communications on Pure and Applied Mathematics, 8:123–132, 1955.

    Google Scholar 

  7. G.A. Holzapfel. Nonlinear Solid Mechanics. A continuum Approach for Engineering. John Wiley & Sons, New York, 2000.

    Google Scholar 

  8. C. Truesdell and W. Noll. The Non-Linear Field Theories of Mechanics, Volume III. Springer, New York, 2004.

    Google Scholar 

  9. J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer, New York, 1998.

    Google Scholar 

  10. W. Prager. Introduction to Mechanics of Continua. Ginn and Company, Boston, 1961.

    Google Scholar 

  11. E.A. De Souza Neto, D. Peric, and D.R.J. Owen. Computational methods for plasticity. Theory and applications. John Wiley & Sons, New York, 2008.

    Google Scholar 

  12. R. von Mises. Mechanik der festen körper im plastisch- deformablen zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 582–592, 1913.

    Google Scholar 

  13. P. Bridgmain. The Physics of High Pressure. Bell & Sons, London, 1949.

    Google Scholar 

  14. R.I. Borja. Plasticity. Modeling & Computation. Springer, New York, 2013.

    Google Scholar 

  15. J.C. Simo and R.L. Taylor. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48:101–118, 1985.

    Google Scholar 

  16. GiD website. http://www.gidhome.com.

  17. M. Fredriksson and N.S. Ottosen. Fast and accurate four-node quadrilateral. International Journal For Numerical Methods In Engineering, 61:1809–1834, 2004.

    Google Scholar 

  18. A. Franci, E. Oñate, and J. M. Carbonell. Velocity-based formulations for standard and quasi-incompressible hypoelastic-plastic solids. International Journal for Numerical Methods in Engineering, doi:10.1002/nme.5205., 2016.

  19. J.J. Skrzypek. Plasticity and creep. theory, examples, and problems. CRC Press, London, 1993.

    Google Scholar 

  20. T. Belytschko and L.P. Bindeman. Assumed strain stabilization of eight node hexahedral element. Computer Methods In Applied Mechanics And Engineering, 105:225–260, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Franci .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Franci, A. (2017). Velocity-Based Formulations for Compressible Materials. In: Unified Lagrangian Formulation for Fluid and Solid Mechanics, Fluid-Structure Interaction and Coupled Thermal Problems Using the PFEM. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-45662-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45662-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45661-4

  • Online ISBN: 978-3-319-45662-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics