Eco-Adaptation Strategies of Health to Climate Change: Case of Zoonotic Cutaneous Leishmaniasis(ZCL) as Vulnerability Indicatorin Pre-Saharan Region of Morocco

  • Kholoud KahimeEmail author
  • Lahouari Bounoua
  • Mohammed Messouli
  • Samia Boussaa
  • Ali Boumezzough


Human societies are rapidly increasing in size, driving with them the level of appropriation of Earth’s resources, including land use. Today, human influence has reached global proportions and has altered ecosystems with consequences for local and regional climates. These changes in climates often alter the biosphere’s ecosystem services and social livelihood; and in some cases they strongly affect human security, including publichealth. For example, in Pre-Saharan North Africashifts in surface climate associated with climate change may have altered the dynamic of zoonotic cutaneous leishmaniasis (ZCL), a vectorial disease causing threat to health security in most North African countries. Leishmaniasis is a vector-borne disease widespread in most countries of the Mediterranean basin, including Morocco where it causes a public health problem that is worsening with changes in climate and unsustainable population activities. ZCL is a form of leishmaniasis endemic in south-east Morocco, especially in the province of Errachidia. Caused by Leishmania major, this form is transmitted by Phlebotomus (Phlebotomus) papatasi (Diptera: Psychodidae), with Meriones shawi grandisthe main reservoir host. This investigation is carried out in the province of Errachidia with the aim to assess the vulnerability of local populations to ZCL, as influenced by climate change, and identify potential adaptation strategies susceptible to reduce the risk of infection. Our research is based on extensive interviews with local populations, particularly about their behavior and their interactions with local environment changes. It also refers to reports from the Moroccan Ministry of Health on the prevalence of disease and socio-economic data from the region. As results, we report on micro-environmental and socio-economic aspects that may act as risk factors conditioning the resurgence of this parasitic disease. It is a contribution that raises the flag about ZCL in order to develop an eco-health approach and determine adaptation procedures able to reduce the sensitivity and exposure of vulnerable populations. Based on population perceptions, the relationship between the transmission cycle of disease, environment and local population was discussed.


Leishmaniasis Vulnerability Climate change Adaptation Morocco 


  1. Alvar, J., Yactayo, S., & Bern, C. (2006). Leishmaniasis and poverty. Trends in Parasitology, 22(12), 552–557.CrossRefGoogle Scholar
  2. Amarir, F., El Mansouri, B., Fellah, H., Sebti, F., Lakranbi, M., Handali, S., Wilkins, P., El Idrissi, A. L., Sadak, A., & Rhajaoui, M. (2011). National serologic survey of Haematobium Schistosomiasis in Morocco: Evidence for elimination. The American Journal of Tropical Medicine and Hygiene, 84, 15–19.CrossRefGoogle Scholar
  3. Belazzoug, S. (1992). Leishmaniasis in Mediterranean countries. Veterinary Parasitology, 44, 15–19.CrossRefGoogle Scholar
  4. Bounoua, L., Kahime, K., Houti, L., Blakey, T., Ebi, K. L., Zhang, P., Imhoff, M. L., Thome, K., Dudek, C., Sahabi, S. A., Messouli, M., Makhlouf, B., EI Laamrani, A., & Boumezzough, A. (2013). Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. major) in Pre-Saharan North Africa. International Journal of Environmental Research and Public Health, 10(8), 3172–3191.CrossRefGoogle Scholar
  5. Boussaa, S. (2008). Epidémiologie des leishmanioses dans la région de Marrakech, Maroc. Effet de l’urbanisation sur la répartition spatio-temporelle des phlébotomes and caractérisation moléculaire de leurs populations. Ph.D thesis, University of Cadi Ayyad, Marrakesh, Morocco. 190 p.Google Scholar
  6. Boussaa, S., Guernaoui, S., Pesson, B., & Boumezzough, A. (2005). Seasonal fuctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco. Acta Tropica, 95, 86–91.CrossRefGoogle Scholar
  7. Cross, E. R., Newcomb, W. W., & Tucker, C. J. (1996). Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. The American Journal of Tropical Medicine and Hygiene, 54, 530–536.Google Scholar
  8. Dedet, J. P. (2001). Répartition géographique des leishmanioses. Médecine et Maladies Infectieuses, 31, 178–183.CrossRefGoogle Scholar
  9. Desjeux, P. (2001). The increase in risk factors for leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 239–243.CrossRefGoogle Scholar
  10. Direction d’Epidémiologie et de Lutte contre les Maladies, (DELM). (2012). Cutaneous leishmaniasis data is provided by the Directorate of Epidemiology and Fight Against Diseases. Health Ministry of Morocco. Available online: Accessed 19 July 2013.
  11. El Rhaffari, K., Hammani, M., & Benlyas Zaid, A. (2002). Traitement de la leishmaniose cutanée par la phytothérapie au Tafilalet. Biologie and Santé, 1(4).Google Scholar
  12. Gubler. (1998). Resurgent vector borne diseases as a global health problem. Emerging Infectious Diseases, 4, 442–450.CrossRefGoogle Scholar
  13. Guernaoui, S., Boumezzough, A., & Laamrani, A. (2006). Altitudinal structuring of sand flies (Diptera: Psychodidae) in the High-Atlas mountains (Morocco) and its relation to the risk of leishmaniasis transmission. Acta Tropica, 97, 246–351.CrossRefGoogle Scholar
  14. Haines, A. (1998). Global warming and vector-borne diseases. Lancet, 351, 1737–1738.CrossRefGoogle Scholar
  15. Health Provincial Delegation of Errachidia (HPDE). (2012). Program against leishmaniasis. Response action plan 2010/2012. Health Ministry of Morocco.Google Scholar
  16. Intergovernemental Panel on Climate Change (IPCC). (2001). Annexe B of the third report. New York 196.Google Scholar
  17. Intergovernmental Panel on Climate Change (IPCC). (2007). Summary for policymakers. In Climate change 2007: The physical science basis (Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Intergovernmental Panel on Climate Change (IPCC). (2014). Fifth assessment report – Climate change 2014: The synthesis report. Geneva: IPCC.Google Scholar
  19. Johnson, L. R., Ben-Horin, T., Lafferty, K. D., McNally, A., Mordecai, E., Paaijmans, K. P., Pawar, S., & Ryan, S. J. (2015). Understanding uncertainty in temperature effects on vector-borne disease: A Bayesian approach. Ecology, 96, 203–213.CrossRefGoogle Scholar
  20. Kabiri, L. (2004). Contribution à la connaissance, la préservation et la valorisation des Oasis du sud Marocain: cas de Tafilalet. Thèse d’habilitation universitaire, Faculté des Sciences et Techniques, Université My Ismail, Errachidia, Maroc 2004.Google Scholar
  21. Kahime, K., Boussaa, S., Bounoua, L., Messouli, M., & Boumezzough, A. (2014). Leishmaniasis in Morocco: Diseases and vectors. Asian Pacific Journal of Tropical Disease, 4, 530–534.CrossRefGoogle Scholar
  22. Mahjour, J., Akalay, O., & Saddiki, A. (1992). Les leishmanioses au Maroc de l’analyse écoépidémiologie à la prévention. DEPS Bulletin Epidémiology, Supp. N°7.Google Scholar
  23. Patz, J. A., McGeehin, M. A., Bernard, S. M., Ebi, K. L., Epstein, P. R., Grambsch, A., Gubler, D. J., Reither, P., Romieu, I., Rose, J. B., Samet, J. M., & Trtanj, J. (2000). The potential health impacts of climate variability and change for the United States: Executive summary of the report of the health sector of the U.S. National Assessment. Environmental Health Perspectives, 108, 367–376.CrossRefGoogle Scholar
  24. Patz, J. A., Frumkin, H., Holloway, T., Vimont, D. J., & Haines, A. (2014). Climate change: Challenges and opportunities for global health. JAMA, 312, 1565–1580. doi: 10.1001/jama.2014.13186.CrossRefGoogle Scholar
  25. Ready, P. D. (2008). Leishmaniasis emergence and climate change. Revue scientifique et technique (International Office of Epizootics), 27, 399–412.Google Scholar
  26. Reiter, P. (2001). Climate change and mosquito-borne disease. Environmental Health Perspectives, 109(1), 141–161.CrossRefGoogle Scholar
  27. Rioux, J. A., & de La Rocque, S. (2003). Climats, leishmanioses et trypanosomiases. Changements climatiques, maladies infectieuses et allergiques. Annales de l’Institut Pasteur, 16, 41–62.Google Scholar
  28. Rioux, J. A., Guilvard, E., Dereure, J., Lanotte, G., Denial, M., Pratlong, F., Serres, E., & Belmonte, A. (1986) Infestation naturelle de Phlebotomus papatasi (Scopoli, 1786) par Leishmania major MON-25. A propos de 28 souches isolées dans un foyer du Sud Marocain. In: Leishmania. Taxinomie et Phylogenèse. Applications écoépidémiologiques (Coll. Int. CNRS/INSERM, 1984, pp. 471–470). Montpellier: IMEEE.Google Scholar
  29. Rispail, P., Dereure, J., & Jarry, D. (2002). Risk zones of human leishmaniases in the Western Mediterranean basin. Correlations between vectors sand flies, bioclimatology and phytosociology. Memórias do instituto Oswaldo Cruz, Rio de Janeiro, 97(4), 477–483.CrossRefGoogle Scholar
  30. Rodhain, F. (2000). Impacts sur la santé: le cas des maladies à vecteurs. In Impacts potentiels du changement climatique en France au XXIe siècle. Mission interministérielle de l’effet de serre (pp. 122–127). Paris: Ministère de l’aménagement du territoire et de l’environnement.Google Scholar
  31. Schroter, D., Polsky, C., & Patt, A. G. (2005). Assessing vulnerabilities to the effects of global change: An eight step approach. Mitigation and Adaptation Strategies for Global Change, 10, 573–596.CrossRefGoogle Scholar
  32. Standing Committee on Emerging Science for Environmental Health Decisions, Board on Life Sciences, Division on Earth and Life Studies, National Research Council (2015, July 7). Modeling the health risks of climate change: Workshop summary. Washington, DC: National Academies Press (US).Google Scholar
  33. Sutherst, R. W. (1993). Arthropods as disease vectors in a changing environment. In J. V. Lake, G. R. Bock, & K. Ackrill (Eds.), Environmental change and human health (pp. 124–145). Chichester: Wiley.Google Scholar
  34. Sutherst, R. W. (1998). Implications of global change and climate variability for vector-borne diseases: Generic approaches to impact assessments. International Journal for Parasitology, 28, 935–945.CrossRefGoogle Scholar
  35. Sutherst, R. W. (2001). The vulnerability of animal and human health to parasites under global change. International Journal for Parasitology, 31, 933–948.CrossRefGoogle Scholar
  36. Sutherst, R. B. (2004). Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Reviews, 17, 136–173.CrossRefGoogle Scholar
  37. Tahraoui, A., El-Hilaly, J., Israili, Z. H., & Lyoussi, B. (2006). Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). Journal of Ethnopharmacology, 110, 105–117.CrossRefGoogle Scholar
  38. Taubes, G. (1997). Apocalypse not. Science, 278, 1004–1006.CrossRefGoogle Scholar
  39. Toumi, A., Chlif, S., Bettaieb, J., Alaya, N. B., Boukthir, A., Ahmadi, Z. E., & Ben Salah, A. (2012). Temporal dynamics and impact of climate factors on the cases of zoonotic cutaneous leishmaniasis in Central Tunisia. PLoS Neglected Tropical Diseases, 6, e1633. doi: 10.1371/journal.pntd.0001633.CrossRefGoogle Scholar
  40. Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 100, 8074–8079.CrossRefGoogle Scholar
  41. United Nations Framework Convention on Climate Change (UNFCCC). (1992).
  42. World Health Organization (WHO). (2007, March 22). Report of the sixtieth worldwide assembly on health. WHO: Geneva.Google Scholar
  43. World Health Organization (WHO). (2010). Control of the leishmaniasis: Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases (World Health Organization technical report series No. 949). Geneva: WHO.Google Scholar
  44. Yates, T. L., Mills, J. N., Parmenter, C. A., Ksiazek, T. G., Parmenter, R. R., Vande Castle, J. R., Calisher, C. H., Nichol, S. T., Abbott, K. D., Young, J. C., et al. (2002). The ecology and evolutionary history of an emergent disease: Hantavirus pulmonary syndrome. Bioscience, 52, 989–998.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Kholoud Kahime
    • 1
    Email author
  • Lahouari Bounoua
    • 2
  • Mohammed Messouli
    • 3
  • Samia Boussaa
    • 4
  • Ali Boumezzough
    • 1
  1. 1.Laboratory of Ecology & Environment, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco
  2. 2.Biospheric Sciences LaboratoryNASA’s Goddard Space Flight CenterGoddardUSA
  3. 3.Laboratory of Hydrobiology, Ecotoxicology and Sanitation, Faculty of SciencesCadi Ayyad University of MarrakeshMarrakeshMorocco
  4. 4.Institut Supérieur des Professions Infirmières et des Techniques de Santé (ISPITS)MarrakeshMorocco

Personalised recommendations