Advertisement

Climate Change Impacts on Water Availability and Human Security in the Intercontinental Biosphere Reserve of the Mediterranean (Morocco-Spain)

  • Diana PascualEmail author
  • Eduard Pla
  • Jaume Fons
  • Dania Abdul-Malak
Chapter

Abstract

The Mediterranean basin has been identified as one of the world most vulnerable regions to global change effects. Global and regional climate change scenarios foresee an increase in the average annual temperature over the planet’s mean. These scenarios project an increasing frequency of drought episodes adding to the complexity of water scarcity management and questioning the future sustainability of water resource uses. This study assesses the potential water vulnerability in the Intercontinental Biosphere Reserve of the Mediterranean (IBRM), located in the western side of the Mediterranean Basin between Spain (Europe) and Morocco (Africa). The vulnerability assessment proposes an innovative and multidisciplinary approach based on the use of climate change scenarios, a hydro-ecological model and the participation of stakeholders and local experts in expert meetings. Future scenarios draw a more arid climate for the IBRM, with more frequent water scarcity phenomena. A reduction of around 28.1–30.3 % is expected in stream flows by 2070. Agricultural water demands are expected to increase between 7.5 and 16 % in the Moroccan side in order to maintain the current production standards, whereas Spanish pastures are expected to maintain current productions with no need of supplementary water supply. Within forests, tree covered areas showed a higher potential vulnerability to future climate change than shrublands proving higher adaptation to arid conditions. Finally, the tourism will be impacted by the increase in summer temperature and in water supply shortages. Moreover, a significant spatial segregation of impacts is observed. Higher altitudes will be less affected by climate change and changes may be relevant to biodiversity but not to human activities. On the contrary, lower altitudes and coastal areas will experience an increasing water demand to sustain different uses by the end of the century in a higher water scarcity context.

Keywords

Climate change Vulnerability Mediterranean basin IBRM SWAT 

Notes

Acknowledgements

This paper is the outcome of the FP7-EU CLICO project (Climate Change, Hydro-Conflicts and Human Security, SSH-CT-2010-244443). We wish to thank J.A. Lopez-Bustins (Climatology Group, Geography and History Faculty, University of Barcelona) for helping with climatic analysis, and Hanane Nauoi (Parc National de Talassemtane) for her technical contribution to the CLICO project and her support for the development of the focus groups. We also thank the Junta de Andalusia and the Haut Commissariat des Eaux et Forêts du Maroc for the data and cartography provision.

References

  1. Abdul-Malak, D., Fons, J., Pla, E., & Pascual, D. (2012). Hydro-security profile IBRM (Morocco-Spain). CLICO project WP2. Internal report.Google Scholar
  2. AEMET. (2009). Generación de escenarios regionalizados de cambio climático para España. Google Scholar
  3. Amelung, B., & Viner, D. (2006). Mediterranean tourism: Exploring the future with the tourism climatic index. Journal of Sustainable Tourism, 14(4), 349–366.CrossRefGoogle Scholar
  4. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large-area hydrologic modeling and assessment: Part I. Model development. Journal American Water Resources Association, 34(1), 73–89.CrossRefGoogle Scholar
  5. Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (2008). Climate change and water (IPCC technical paper). Geneva: IPCC Secretariat.Google Scholar
  6. Benoît, G., & Comeau, A. (2005), Méditerranée: les perspectives du Pan Bleu sur l’environnement et le développement. Google Scholar
  7. Beven, K. (2011). I believe in climate change but how precautionary do we need to be in planning for the future? Hydrological Processes, 25, 1517–1520.CrossRefGoogle Scholar
  8. Bruggeman, A., Hadjinicolaou, P., & Lange, M. (2010). Climate outlooks for CLICO case study sites. CLICO project WP2. Internal report.Google Scholar
  9. CRED, Center for Research on the Epidemiology of Disasters. (2010). International disasters data base (EM-DAT). University of Louvain and the United Nations Department of Humanitarian Affairs. http://www.emdat.be. Accessed Mar 2013
  10. ENPI. (2007). Morocco: Strategy paper (2007–2013).Google Scholar
  11. Ewen, J., O’Donnell, G., Burton, A., & O’Connell, E. (2006). Errors and uncertainty in physically-based rainfall-runoff modelling of catchment change effects. Journal of Hydrology, 330, 641–650.CrossRefGoogle Scholar
  12. Fornés, J., Hera, A., & Llamas, R. (2005). The silent revolution in groundwater intensive use and its influence in Spain. Water Policy, 7, 1–16.Google Scholar
  13. Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209–224.CrossRefGoogle Scholar
  14. Gracia, C. A., Tello, E., Sabaté, S., & Bellot, J. (1999). Gotilwa: An integrated model of water dynamics and forest growth. In F. Rodà, J. Retana, et al. (Eds.), Ecology of Mediterranean evergreen oak forest (Ecological studies, Vol. 137, pp. 163–179). Berlin: Springer.CrossRefGoogle Scholar
  15. Hallegatte, S., Hourcade, J. C., & Ambrosi, P. (2007). Using climate analogues for assessing climate change economic impacts in urban areas. Climatic Change, 82, 47–60.CrossRefGoogle Scholar
  16. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  17. Hisdal, H., Stahl, K., Tallaksen, L., & Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21, 317–333.CrossRefGoogle Scholar
  18. Iglesias, A., Garrote, L., Flores, F., & Moneo, M. (2007). Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resources Management, 21, 775–788.CrossRefGoogle Scholar
  19. IPCC. (2007). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. In: S. Solomon, et al., (Eds.). Cambridge/New York: Cambridge University Press.Google Scholar
  20. Kallis, G. (2008). Droughts. Annual Review of Environment and Resources, 33, 85–118.CrossRefGoogle Scholar
  21. Karaky, R. H. (2002). Climate variability and agricultural policy in Morocco. Purdue University.Google Scholar
  22. Méndez, J. M. (2008). La adaptación al Cambio Climático en Andalucía. In: Proceedings of the Congreso Nacional del Medio Ambiente, Madrid.Google Scholar
  23. Mestre-Barceló, A. (1995). Five-year drought continues in Spain. Drought Netw News (1994–2001). Nebraska: University of Nebraska.Google Scholar
  24. Molina, F., & Villa, A. (2008). La IBRM Andalucía (España)-Marruecos como instrumento de cooperación. AEET, 17, 17–27.Google Scholar
  25. Moreira, J. M., & Ribalaygua, J. (2007). Escenarios Actuales y Futuros del Clima para Andalucía. Consejería de Medio Ambiente, Junta de Andalucía.Google Scholar
  26. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.CrossRefGoogle Scholar
  27. Moriondo, M., & Bindi, M. (2007). Impact of climate change on the phenology of typical Mediterranean crops. Italian Journal of Agrometeorology, 3, 5–12.Google Scholar
  28. Moriondo, M., Good, P., Durao, R., Bindi, M., Gianakopoulos, C., & Corte-Real, J. (2006). Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31, 85–95.CrossRefGoogle Scholar
  29. Ouassou, A., Ameziane, T., Belghiti, M., Ziyad, A., & Belhamd, A. (2005). Morocco. In A. Iglesias & M. Moreno (Eds.), Drought preparedness and mitigation in the Mediterranean: Analysis of the organizations and institutions (pp. 105–129). Paris: CIHEAM.Google Scholar
  30. Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hanson, C. E. (2007). Climate change 2007: Impacts, adaptation, and vulnerability. Contribution of WGII to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
  31. Pascual, D., Pla, E., López-Bustins, J. A., Retana, J., & Terradas, J. (2015). Impacts of climate change on water resources in the Mediterranean Basin: A case study in Catalonia, Spain. Hydrological Sciences Journal, 60(12). http://dx.doi.org/10.1080/02626667.2014.947290.
  32. Roberts, C. R. (2002). Drought management in the Río Guadalhorce region of Andalucía, southern Spain. Land Degradation and Development, 13, 151–163.CrossRefGoogle Scholar
  33. Sarris, D., Christodoulakis, D., & Körner, C. (2007). Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology, 13, 1187–1200.CrossRefGoogle Scholar
  34. Scheffran, J., & Battaglini, A. (2011). Climate and conflicts: The security risks of global warming. Regional Environmental Change, 11(1), 27–39.CrossRefGoogle Scholar
  35. Schröter, D., Cramer, W., Leemans, R., et al. (2005). Ecosystem service supply and human vulnerability to global change in Europe. Science, 310(5732), 1333–1337.CrossRefGoogle Scholar
  36. Senatore, A., Mendicino, G., Smiatek, G., & Kunstmann, H. (2011). Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. Journal of Hydrology, 399, 70–92.CrossRefGoogle Scholar
  37. Serra-Diaz, J. M., Ninyerola, M., & Lloret, F. (2012). Coexistence of Abies alba (Mill.) – Fagus sylvatica (L.) and climate change impact in the Iberian Peninsula: A climatic-niche perspective approach. Functional Ecology of Plants, 207(1), 10–18.CrossRefGoogle Scholar
  38. Sharpley, A. N., & William, J. R. (1990). EPIC-erosion/productivity impact calculator: 1. Model documentation. U.S. Department of Agriculture, Technical Bulletin 1768.Google Scholar
  39. Skees, J., Gober, S., Varangis, P., Lester, R., & Kalavakonda, V. (2001). Developing rainfall-based index insurance in Morocco (Policy research working papers 2577). Washington, DC: The World Bank.Google Scholar
  40. Touchan, R., Anchukaitis, K., Meko, D., Sabir, M., Attalah, S., & Aloui, A. (2010). Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Climate Dynamics, 37, 237–252.CrossRefGoogle Scholar
  41. UNDP. (2008). Human development report 2007/2008. Google Scholar
  42. UN-ISDR. (2006). Disaster reduction in Africa. ISDR inform6: 2006.Google Scholar
  43. Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., et al. (2013). The response of vegetation to drought time-scales across global land biomes. Proceedings of the National academy of Sciences of the United States of America, 110(1), 52–57.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Diana Pascual
    • 1
    Email author
  • Eduard Pla
    • 1
  • Jaume Fons
    • 2
  • Dania Abdul-Malak
    • 3
  1. 1.CREAFCerdanyola del VallèsSpain
  2. 2.ETC-SIA, Univ Autònoma BarcelonaCerdanyola del VallèsSpain
  3. 3.ETC-SIA, Univ de MálagaMálagaSpain

Personalised recommendations