Skip to main content

Computing All Space Curve Solutions of Polynomial Systems by Polyhedral Methods

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

A polyhedral method to solve a system of polynomial equations exploits its sparse structure via the Newton polytopes of the polynomials. We propose a hybrid symbolic-numeric method to compute a Puiseux series expansion for every space curve that is a solution of a polynomial system. The focus of this paper concerns the difficult case when the leading powers of the Puiseux series of the space curve are contained in the relative interior of a higher dimensional cone of the tropical prevariety. We show that this difficult case does not occur for polynomials with generic coefficients. To resolve this case, we propose to apply polyhedral end games to recover tropisms hidden in the tropical prevariety.

This material is based upon work supported by the National Science Foundation under Grant No. 1440534.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrovic, D., Verschelde, J.: Computing Puiseux series for algebraic surfaces. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 20–27. ACM (2012)

    Google Scholar 

  2. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting symmetry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bernshteǐn, D.: The number of roots of a system of equations. Funct. Anal. Appl. 9(3), 183–185 (1975)

    Article  MathSciNet  Google Scholar 

  4. Bogart, T., Jensen, A., Speyer, D., Sturmfels, B., Thomas, R.: Computing tropical varieties. J. Symbolic Comput. 42(1), 54–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  6. Herrero, M., Jeronimo, G., Sabia, J.: Affine solution sets of sparse polynomial systems. J. Symbolic Comput. 51(1), 34–54 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Herrero, M., Jeronimo, G., Sabia, J.: Elimination for generic sparse polynomial systems. Discrete Comput. Geom. 51(3), 578–599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Herrero, M., Jeronimo, G., Sabia, J.: Puiseux expansions and non-isolated points in algebraic varieties. Commun. Algebra 44(5), 2100–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hida, Y., Li, X., Bailey, D.: Algorithms for quad-double precision floating point arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), 11–17, Vail, CO, USA, pp. 155–162. IEEE Computer Society (2001). Shortened version of Technical Report LBNL-46996, software at http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz

  10. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995). http://www.jstor.org/stable/2153370

    Article  MathSciNet  MATH  Google Scholar 

  11. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation. Numer. Algorithms 18(1), 91–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jensen, A., Leykin, A., Yu, J.: Computing tropical curves via homotopy continuation. Exp. Math. 25(1), 83–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jensen, A., Yu, J.: Computing tropical resultants. J. Algebra 387, 287–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jensen, A.: Computing Gröbner fans and tropical varieties in Gfan. In: Stillman, M., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation techniques for sparse systems. Found. Comput. Math. 9(1), 1–50 (2008). http://dx.doi.org/10.1007/s10208-008-9024-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  17. OEIS Foundation Inc.: The on-line encyclopedia of integer sequences (2016). http://oeis.org. Accessed 03 Nov 2015

  18. Römer, T., Schmitz, K.: Generic tropical varieties. J. Pure Appl. Algebra 216(1), 140–148 (2012). http://www.sciencedirect.com/science/article/pii/S0022404911001290

    Article  MathSciNet  MATH  Google Scholar 

  19. Sabeti, R.: Numerical-symbolic exact irreducible decomposition of cyclic-12. LMS J. Comput. Math. 14, 155–172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  21. Sommars, J., Verschelde, J.: Pruning algorithms for pretropisms of Newton polytopes. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 489–503 (2016)

    Google Scholar 

  22. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  23. Verschelde, J.: Polyhedral methods in numerical algebraic geometry. In: Bates, D., Besana, G., Di Rocco, S., Wampler, C. (eds.) Interactions of Classical and Numerical Algebraic Geometry, Contemporary Mathematics, vol. 496, pp. 243–263. AMS (2009)

    Google Scholar 

  24. Verschelde, J.: Modernizing PHCpack through phcpy. In: de Buyl, P., Varoquaux, N. (eds.) Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), pp. 71–76 (2014)

    Google Scholar 

  25. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Bliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bliss, N., Verschelde, J. (2016). Computing All Space Curve Solutions of Polynomial Systems by Polyhedral Methods. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics