Skip to main content

Stimulus Responsive Graphene Scaffolds for Tissue Engineering

  • Chapter
  • First Online:
Book cover Graphene-based Materials in Health and Environment

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Tissue engineering (TE) is an emerging area that aims to repair damaged tissues and organs by combining different scaffold materials with living cells. Recently, scientists started to engineer a new generation of nanocomposite scaffolds able to mimic biochemical and biophysical mechanisms to modulate the cellular responses promoting the restoration of tissue structure or function. Due to its unique electrical, topographical and chemical properties, graphene is a material that holds a great potential for TE, being already considered as one of the best candidates for accelerating and guiding stem cell differentiations. Although this is a promising field there are still some challenges to overcome, such as the efficient control of the differentiation of the stem cells, especially in graphene-based microenvironments. Hence, this chapter will review the existing research related to the ability of graphene and its derivatives (graphene oxide and reduced graphene oxide) to induce stem cell differentiation into diverse lineages when under the influence of electrical, mechanical, optical and topographic stimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Persidis A (1999) Tissue engineering Nat Biotech 17(5):508–510. doi:10.1038/8700

    Google Scholar 

  2. van der Kooy D, Weiss S (2000) Why stem cells? Science 287(5457):1439–1441

    Article  Google Scholar 

  3. Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A, Ahari AF, Kwon CH, Nichol JW, Manoucheri S, Zamanian B, Wang Y, Khademhosseini A (2014) Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med 8(1):1–14. doi:10.1002/term.1494

    Article  Google Scholar 

  4. Rosa V, Bona AD, Cavalcanti BN, Nör JE (2012) Tissue engineering: from research to dental clinics. Dent Mater 28(4):341–348

    Article  Google Scholar 

  5. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60(2):215–228. doi:10.1016/j.addr.2007.08.037

    Article  Google Scholar 

  6. Kemppainen JM, Hollister SJ (2010) Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A 94(1):9–18. doi:10.1002/jbm.a.32653

    Article  Google Scholar 

  7. Leong NL, Jiang J, Lu HH (2006) Polymer-ceramic composite scaffold induces osteogenic differentiation of human mesenchymal stem cells. Conf Proc IEEE Eng Med Biol Soc 1:2651–2654. doi:10.1109/iembs.2006.259459

    Google Scholar 

  8. Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48(42):7752–7777. doi:10.1002/anie.200901678

    Article  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  10. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  11. Peng R, Yao X, Ding J (2011) Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32(32):8048–8057. doi:10.1016/j.biomaterials.2011.07.035

    Article  Google Scholar 

  12. La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, Han JY, Char K, Kim BS (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9(23):4051–4060. doi:10.1002/smll.201300571

    Article  Google Scholar 

  13. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):8. doi:10.1007/s11671-010-9751-6

    Google Scholar 

  14. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34. doi:10.1021/tx200339h

    Article  Google Scholar 

  15. Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427. doi:10.1016/j.biomaterials.2011.09.071

    Article  Google Scholar 

  16. Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352. doi:10.1039/c0jm02806a

    Article  Google Scholar 

  17. Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J Phys Chem C 116(17):9653–9659. doi:10.1021/jp301707m

    Article  Google Scholar 

  18. Akhavan O, Ghaderi E, Rahimi K (2012) Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J Mater Chem 22(43):23260–23266. doi:10.1039/c2jm35228a

    Article  Google Scholar 

  19. Cai Y, Li H, Du B, Yang M, Li Y, Wu D, Zhao Y, Dai Y, Wei Q (2011) Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM·BF4-coated SBA-15 as labels and functionalized graphene as enhancer. Biomaterials 32(8):2117–2123. doi:10.1016/j.biomaterials.2010.11.058

    Article  Google Scholar 

  20. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937. doi:10.1016/j.biomaterials.2011.01.002

    Article  Google Scholar 

  21. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP, Pantovic AC, Dramicanin MD, Trajkovic VS (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4):1121–1129. doi:10.1016/j.biomaterials.2010.10.030

    Article  Google Scholar 

  22. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214. doi:10.1016/j.biomaterials.2011.11.064

    Article  Google Scholar 

  23. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22(27):13773–13781. doi:10.1039/c2jm31396k

    Article  Google Scholar 

  24. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24(14):1868–1872. doi:10.1002/adma.201104964

    Article  Google Scholar 

  25. Ryu S, Kim B-S (2013) Culture of neural cells and stem cells on graphene. Tissue Eng Regen Med 10(2):39–46. doi:10.1007/s13770-013-0384-6

    Article  Google Scholar 

  26. Menaa F, Abdelghani A, Menaa B (2015) Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J Tissue Eng Regen Med 9(12):1321–1338. doi:10.1002/term.1910

    Article  Google Scholar 

  27. Kim T-H, Lee T, El-Said W, Choi J-W (2015) Graphene-based materials for stem cell applications. Materials 8(12):5481

    Article  Google Scholar 

  28. Akhavan O (2016) Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of nervous systems. J Mater Chem B. doi:10.1039/c6tb00152a

    Google Scholar 

  29. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:12. doi:10.1155/2015/804213

    Article  Google Scholar 

  30. Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329. doi:10.1016/j.carbon.2010.07.045

    Article  Google Scholar 

  31. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, Sung HJ (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176. doi:10.1039/c3nr00803g

    Article  Google Scholar 

  32. Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34(8):2017–2023. doi:10.1016/j.biomaterials.2012.11.052

    Article  Google Scholar 

  33. Kim J, Park S, Kim YJ, Jeon CS, Lim KT, Seonwoo H, Cho SP, Chung TD, Choung PH, Choung YH, Hong BH, Chung JH (2015) Monolayer graphene-directed growth and neuronal differentiation of mesenchymal stem cells. J Biomed Nanotechnol 11(11):2024–2033

    Article  Google Scholar 

  34. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):H263–H267. doi:10.1002/adma.201101503

    Article  Google Scholar 

  35. Kim T-H, Shah S, Yang L, Yin PT, Hossain MK, Conley B, Choi J-W, Lee K-B (2015) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9(4):3780–3790. doi:10.1021/nn5066028

    Article  Google Scholar 

  36. Hilpert F, Heiser A, Wieckhorst W, Arnold N, Kabelitz D, Jonat W, Pfisterer J (2005) The impact of electrical charge on the viability and physiology of dendritic cells. Scand J Immunol 62(4):399–406. doi:10.1111/j.1365-3083.2005.01677.x

    Article  Google Scholar 

  37. Woo DG, Shim MS, Park JS, Yang HN, Lee DR, Park KH (2009) The effect of electrical stimulation on the differentiation of hESCs adhered onto fibronectin-coated gold nanoparticles. Biomaterials 30(29):5631–5638. doi:10.1016/j.biomaterials.2009.07.026

    Article  Google Scholar 

  38. Liu J, Zhao Z, Li J, Zou L, Shuler C, Zou Y, Huang X, Li M, Wang J (2009) Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J Cell Biochem 107(2):224–232. doi:10.1002/jcb.22118

    Article  Google Scholar 

  39. Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953. doi:10.1007/s10237-010-0285-8

    Article  Google Scholar 

  40. Pires F, Ferreira Q, Rodrigues CA, Morgado J (1850) Ferreira FC (2015) Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta 6:1158–1168. doi:10.1016/j.bbagen.2015.01.020

    Google Scholar 

  41. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479. doi:10.1007/s00586-008-0745-3

    Article  Google Scholar 

  42. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40. doi:10.1016/S1369-7021(04)00233-0

    Article  Google Scholar 

  43. Meng X, Leslie P, Zhang Y, Dong J (2014) Stem cells in a three-dimensional scaffold environment. SpringerPlus 3:80. doi:10.1186/2193-1801-3-80

    Article  Google Scholar 

  44. Juang Z-Y, Wu C-Y, Lu A-Y, Su C-Y, Leou K-C, Chen F-R, Tsai C-H (2010) Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48(11):3169–3174

    Article  Google Scholar 

  45. Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224. doi:10.1021/ar300159f

    Article  Google Scholar 

  46. Wick P, Louw-Gaume AE, Kucki M, Krug HF, Kostarelos K, Fadeel B, Dawson KA, Salvati A, Vázquez E, Ballerini L, Tretiach M, Benfenati F, Flahaut E, Gauthier L, Prato M, Bianco A (2014) Classification framework for graphene-based materials. Angew Chem Int Ed 53(30):7714–7718. doi:10.1002/anie.201403335

    Article  Google Scholar 

  47. Defteralı Ç, Verdejo R, Peponi L, Martín ED, Martínez-Murillo R, López-Manchado MÁ, Vicario-Abejón C (2016) Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb in vivo. Biomaterials 82:84–93. doi:10.1016/j.biomaterials.2015.12.010

    Article  Google Scholar 

  48. Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon J-K, Park YH, Cho S-P, Lee S, Hong BH, Kim B-S (2014) Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3(2):176–181. doi:10.1002/adhm.201300177

    Article  Google Scholar 

  49. Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, Jeong HC, Hong BH, Ahn Y, Kim B-S (2015) Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater 25(17):2590–2600. doi:10.1002/adfm.201500365

    Article  Google Scholar 

  50. Kumar S, Azam D, Raj S, Kolanthai E, Vasu KS, Sood AK, Chatterjee K (2016) 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. J Biomed Mater Res B Appl Biomater 104(4):732–749. doi:10.1002/jbm.b.33549

    Article  Google Scholar 

  51. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10 (6):424–428. doi:http://www.nature.com/nmat/journal/v10/n6/abs/nmat3001.html#supplementary-information

  52. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604. doi:10.1038/srep01604. http://www.nature.com/articles/srep01604#supplementary-information

  53. Serrano MC, Patino J, Garcia-Rama C, Ferrer ML, Fierro JLG, Tamayo A, Collazos-Castro JE, del Monte F, Gutierrez MC (2014) 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J Mater Chem B 2(34):5698–5706. doi:10.1039/c4tb00652f

    Article  Google Scholar 

  54. Shin YC, Lee JH, Jin L, Kim MJ, Kim Y-J, Hyun JK, Jung T-G, Hong SW, Han D-W (2015) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol 13(1):1–11. doi:10.1186/s12951-015-0081-9

    Article  Google Scholar 

  55. Girao AF, Goncalves G, Bhangra KS, Phillips JB, Knowles J, Irurueta G, Singh MK, Bdkin I, Completo A, Marques PAAP (2016) Electrostatic self-assembled graphene oxide-collagen scaffolds towards a three-dimensional microenvironment for biomimetic applications. RSC Adv 6(54):49039–49051. doi:10.1039/c6ra10213a

    Article  Google Scholar 

  56. Nieto A, Dua R, Zhang C, Boesl B, Ramaswamy S, Agarwal A (2015) Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold. Adv Funct Mater 25(25):3916–3924. doi:10.1002/adfm.201500876

    Article  Google Scholar 

  57. Akhavan O, Ghaderi E (2014) The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J Mater Chem B 2(34):5602–5611. doi:10.1039/c4tb00668b

    Article  Google Scholar 

  58. Ahadian S, Ramon-Azcon J, Chang H, Liang X, Kaji H, Shiku H, Nakajima K, Ramalingam M, Wu H, Matsue T, Khademhosseini A (2014) Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances 4(19):9534–9541. doi:10.1039/c3ra46218h

    Article  Google Scholar 

  59. Meng S (2014) Nerve cell differentiation using constant and programmed electrical stimulation through conductive non-functional graphene nanosheets film. Tissue Eng Regen Med 11(4):274–283. doi:10.1007/s13770-014-0011-1

    Article  Google Scholar 

  60. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315(20):3611–3619. doi:10.1016/j.yexcr.2009.08.015

    Article  Google Scholar 

  61. Akanji OO, Lee DA, Bader DA (2008) The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology 45(3–4):229–243

    Google Scholar 

  62. Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 51(4):404–409

    Article  Google Scholar 

  63. Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2(1):3–10. doi:10.3171/spi.2005.2.1.0003

    Article  Google Scholar 

  64. Wells J, Konrad P, Kao C, Jansen ED, Mahadevan-Jansen A (2007) Pulsed laser versus electrical energy for peripheral nerve stimulation. J Neurosci Methods 163(2):326–337. doi:10.1016/j.jneumeth.2007.03.016

    Article  Google Scholar 

  65. Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216(2):527–535. doi:10.1002/jcp.21431

    Article  Google Scholar 

  66. Akhavan O, Ghaderi E (2013) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5(21):10316–10326. doi:10.1039/c3nr02161k

    Article  Google Scholar 

  67. Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Kam NWS, Patolsky F, Ballerini L (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004. doi:10.1002/adma.200801984

    Article  Google Scholar 

  68. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nano 5 (3):190–194. http://www.nature.com/nnano/journal/v5/n3/suppinfo/nnano.2010.8_S1.html

    Google Scholar 

  69. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180. doi:10.1021/nn1007429

    Article  Google Scholar 

  70. Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1):19–27. doi:10.1016/j.biomaterials.2010.08.095

    Article  Google Scholar 

  71. Kawakami O, Miyamoto S, Hatano T, Yamada K, Hashimoto N, Tabata Y (2005) Accelerated embolization healing of aneurysms by polyethylene terephthalate coils seeded with autologous fibroblasts. Neurosurgery 56(5):1075–1081 (discussion 1075–1081)

    Google Scholar 

  72. Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G (2013) Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34(27):6402–6411. doi:10.1016/j.biomaterials.2013.05.024

    Article  Google Scholar 

  73. Wang K, Fishman HA, Dai H, Harris JS (2006) Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 6(9):2043–2048. doi:10.1021/nl061241t

    Article  Google Scholar 

  74. Zhang Q, Xu J, Song Q, Li N, Zhang Z, Li K, Du Y, Wu L, Tang M, Liu L, Cheng G, Liu J (2014) Synthesis of amphiphilic reduced graphene oxide with an enhanced charge injection capacity for electrical stimulation of neural cells. J Mater Chem B 2(27):4331–4337. doi:10.1039/c4tb00279b

    Article  Google Scholar 

  75. Berit K, Peter K, Christoph N, Sandeep Y, Joerg JS, Christiane T (2016) Graphene electrodes for stimulation of neuronal cells. 2D Mater 3(2):024004

    Article  Google Scholar 

  76. Yan L, Zhao B, Liu X, Li X, Zeng C, Shi H, Xu X, Lin T, Dai L, Liu Y (2016) Aligned nanofibers from polypyrrole/graphene as electrodes for regeneration of optic nerve via electrical stimulation. ACS Appl Mater Interfaces 8(11):6834–6840. doi:10.1021/acsami.5b12843

    Article  Google Scholar 

  77. Zhou K, Thouas GA, Bernard CC, Nisbet, DR, Finkelstein DI, Li D, Forsythe JS (2012) Method to impart electro- and biofunctionality to neural scaffolds using graphene–polyelectrolyte multilayers. ACS Appl Mater Interfaces 4(9):4524–4531. doi:10.1021/am3007565

    Google Scholar 

  78. Sherrell PC, Thompson BC, Wassei JK, Gelmi AA, Higgins MJ, Kaner RB, Wallace GG (2014) Maintaining cytocompatibility of biopolymers through a graphene layer for electrical stimulation of nerve cells. Adv Funct Mater 24(6):769–776. doi:10.1002/adfm.201301760

    Article  Google Scholar 

  79. Guo W, Zhang X, Yu X, Wang S, Qiu J, Tang W, Li L, Liu H, Wang ZL (2016) Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano. doi:10.1021/acsnano.6b00200

    Google Scholar 

  80. Akhavan O, Ghaderi E, Shirazian SA, Rahighi R (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77. doi:10.1016/j.carbon.2015.06.079

    Article  Google Scholar 

  81. Ahadian S, Zhou Y, Yamada S, Estili M, Liang X, Nakajima K, Shiku H, Matsue T (2016) Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale 8(13):7075–7084. doi:10.1039/c5nr07059g

    Article  Google Scholar 

  82. Izzo AD, Richter CP, Jansen ED, Walsh JT Jr (2006) Laser stimulation of the auditory nerve. Lasers Surg Med 38(8):745–753. doi:10.1002/lsm.20358

    Article  Google Scholar 

  83. Geddes LA (2004) Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng 51(1):176–181. doi:10.1109/tbme.2003.820340

    Article  Google Scholar 

  84. Geddes LA, Roeder R (2003) Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng 31(7):879–890

    Article  Google Scholar 

  85. Ragheb T, Geddes LA (1990) Electrical properties of metallic electrodes. Med Biol Eng Comput 28(2):182–186

    Article  Google Scholar 

  86. Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10(6):064003. doi:10.1117/1.2121772

    Article  Google Scholar 

  87. Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506

    Article  Google Scholar 

  88. Izzo AD, Walsh JT, Ralph H, Webb J, Bendett M, Wells J, Richter C-P (2008) Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys J 94(8):3159–3166. doi:10.1529/biophysj.107.117150

    Article  Google Scholar 

  89. Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194. doi:10.1007/s10103-015-1730-9

    Article  Google Scholar 

  90. de Souza SC, Munin E, Alves LP, Salgado MAC, Pacheco MTT (2005) Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. J Photochem Photobiol, B 80(3):203–207. doi:10.1016/j.jphotobiol.2005.05.002

    Article  Google Scholar 

  91. Bukowski B, Deskins NA (2015) The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory. Phys Chem Chem Phys 17(44):29734–29746. doi:10.1039/c5cp04073f

    Article  Google Scholar 

  92. Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J 7(1):1–12. doi:10.1186/1752-153x-7-41

    Article  Google Scholar 

  93. Stengl V, Popelkova D, Vlacil P (2011) TiO2-graphene nanocomposite as high performance photocatalysts. J Phys Chem C. doi:10.1021/jp207515z

    Google Scholar 

  94. Akhavan O, Ghaderi E (2013) Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 1(45):6291–6301. doi:10.1039/c3tb21085e

    Article  Google Scholar 

  95. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758. doi:10.1021/nl803279t

    Article  Google Scholar 

  96. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6(12):2748–2754. doi:10.1021/nl0617033

    Article  Google Scholar 

  97. Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–3601. doi:10.1002/smll.201203106

    Article  Google Scholar 

  98. Akhavan O, Ghaderi E, Shirazian SA (2015) Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors. Colloids Surf B 126:313–321. doi:10.1016/j.colsurfb.2014.12.027

    Article  Google Scholar 

  99. Li D, Zhou J, Chowdhury F, Cheng J, Wang N, Wang F (2011) Role of mechanical factors in fate decisions of stem cells. Regen Med 6(2):229–240. doi:10.2217/rme.11.2

    Article  Google Scholar 

  100. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  101. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428. doi:10.1126/science.276.5317.1425

    Article  Google Scholar 

  102. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887. doi:10.1083/jcb.200405004

    Article  Google Scholar 

  103. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  Google Scholar 

  104. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.1126/science.1116995

    Article  Google Scholar 

  105. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10 (1):75–82. doi:http://www.nature.com/nrm/journal/v10/n1/suppinfo/nrm2594_S1.html

  106. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041

    Article  Google Scholar 

  107. Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34. doi:10.1146/annurev.bioeng.9.060906.151927

    Article  Google Scholar 

  108. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62. doi:10.1038/nrm2596

    Article  Google Scholar 

  109. Kang S, Park JB, Lee T-J, Ryu S, Bhang SH, La W-G, Noh M-K, Hong BH, Kim B-S (2015) Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon 83:162–172. doi:10.1016/j.carbon.2014.11.029

    Article  Google Scholar 

  110. Ni ZH, Wang HM, Ma Y, Kasim J, Wu YH, Shen ZX (2008) Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2(5):1033–1039. doi:10.1021/nn800031m

    Article  Google Scholar 

  111. Rasuli R, Rafii-Tabar H, Zad AI (2010) Strain effect on quantum conductance of graphene nanoribbons from maximally localized Wannier functions. Phys Rev B 81(12):125409

    Article  Google Scholar 

  112. Chen C, Wu JZ, Lam KT, Hong G, Gong M, Zhang B, Lu Y, Antaris AL, Diao S, Guo J, Dai H (2015) Graphene nanoribbons under mechanical strain. Adv Mater 27(2):303–309. doi:10.1002/adma.201403750

    Article  Google Scholar 

  113. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285–4290. doi:10.1002/adma.201200846

    Article  Google Scholar 

  114. Akhavan O, Ghaderi E, Abouei E, Hatamie S, Ghasemi E (2014) Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66:395–406. doi:10.1016/j.carbon.2013.09.015

    Article  Google Scholar 

  115. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353(6345):670–674. doi:10.1038/353670a0

    Article  Google Scholar 

  116. Akhavan O, Ghaderi E, Shahsavar M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211. doi:10.1016/j.carbon.2013.03.010

    Article  Google Scholar 

  117. Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4(9):1408–1416. doi:10.1002/adhm.201500056

    Article  Google Scholar 

  118. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588

    Article  Google Scholar 

  119. Solanki A, Shah S, Memoli KA, Park SY, Hong S, Lee K-B (2010) Controlling differentiation of neural stem cells using extracellular matrix protein patterns. Small 6(22):2509–2513. doi:10.1002/smll.201001341

    Article  Google Scholar 

  120. Kshitiz Park J, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb) 4(9):1008–1018

    Article  Google Scholar 

  121. Yao X, Peng R, Ding J (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25(37):5257–5286. doi:10.1002/adma.201301762

    Article  Google Scholar 

  122. Kim J, Kim Y-R, Kim Y, Lim KT, Seonwoo H, Park S, Cho S-P, Hong BH, Choung P-H, Chung TD, Choung Y-H, Chung JH (2013) Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J Mater Chem B 1(7):933–938. doi:10.1039/c2tb00274d

    Article  Google Scholar 

  123. Kang K, Choi SE, Jang HS, Cho WK, Nam Y, Choi IS, Lee JS (2012) In vitro developmental acceleration of hippocampal neurons on nanostructures of self-assembled silica beads in filopodium-size ranges. Angew Chem Int Ed Engl 51(12):2855–2858. doi:10.1002/anie.201106271

    Article  Google Scholar 

  124. Solanki A, Chueng S-TD, Yin PT, Kappera R, Chhowalla M, Lee K-B (2013) Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 25(38):5477–5482. doi:10.1002/adma.201302219

    Article  Google Scholar 

  125. Shah S, Yin PT, Uehara TM, Chueng S-TD, Yang L, Lee K-B (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680. doi:10.1002/adma.201400523

    Article  Google Scholar 

Download references

Acknowledgments

Sofia S. Almeida thanks the Mobility Program: Programme Almeida Garret—Studies during the Academic Year 2015/2016. PAAP Marques thank the Portuguese Foundation for Science and Technology (FCT) for the investigator grant (IF/00917/2013) and for the Project IF/00917/2013/CP1162/CT0016 which supports the researcher grant of André Girão. Gil Gonçalves thank FCT for respectively the grants SFRH/BDP/84419/2012. This work was partially supported by the funding of Program COMPETE-FEDER, Programa Operacional Competitividade e Internacionalização through the Project POCI-01-0145-FEDER-016574 and by FCT, IP through the Project PTDC/EMS-TEC/3263/2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sofia S. Almeida or P. A. A. P. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almeida, S.S., Girão, A.F., Gonçalves, G., Completo, A., Marques, P.A.A.P. (2016). Stimulus Responsive Graphene Scaffolds for Tissue Engineering. In: Gonçalves , G., Marques, P., Vila, M. (eds) Graphene-based Materials in Health and Environment. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-45639-3_8

Download citation

Publish with us

Policies and ethics