Skip to main content

Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Nanotechnology opens new possibilities for the development of antimicrobial materials. Of particular interest are graphene-based nanomaterials, which possess unique antimicrobial properties and offer multiple routes for functionalization into advanced nanocomposite materials. In this chapter, we review the current state of knowledge regarding the fundamental aspects of the antimicrobial interactions of graphene and graphene-based materials. Then, an overview of the multiple graphene-based composite materials developed for antimicrobial applications is provided, with an analysis of the different chemical functionalization routes used to modify graphene and graphene oxide with biocidal compounds. An analysis of the potential of graphene-based nanomaterials in the development of novel antimicrobial surfaces and coatings is also conducted, with an emphasis on the field of membrane processes, where significant developments have been made. Finally, promising avenues for material development are identified and critical questions surrounding graphene-based nanomaterials are discussed, providing a guide for future development and application of antimicrobial graphene-based materials.

Adel Soroush and Douglas Rice have contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:1–7. doi:10.3389/fmicb.2010.00134

    Article  Google Scholar 

  2. Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767. doi:10.1038/35021206

    Article  Google Scholar 

  3. Melo LF, Bott TR (1997) Biofouling in water systems. Exp Therm Fluid Sci 14:375–381. doi:10.1016/S0894-1777(96)00139-2

    Article  Google Scholar 

  4. Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98. doi:10.1080/08927014.2010.542809

    Article  Google Scholar 

  5. Little BJ, Lee JS, Ray RI (2008) The influence of marine biofilms on corrosion: a concise review. Electrochim Acta 54:2–7. doi:10.1016/j.electacta.2008.02.071

    Article  Google Scholar 

  6. Flemming HC, Schaule G, Griebe T et al (1997) Biofouling—the Achilles heel of membrane processes. Desalination 113:215–225. doi:10.1016/S0011-9164(97)00132-X

    Article  Google Scholar 

  7. Azis PKA, Ai-tisan I, Sasikumar N (2001) Biofouling potential and environmental factors of seawater at a desalination plant intake. Water 135:69–82. doi:10.1016/S0011-9164(01)00140-0

    Google Scholar 

  8. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. doi:10.1016/j.jconrel.2011.07.002

    Article  Google Scholar 

  9. Xiu Z, Zhang Q, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.1021/nl301934w

    Google Scholar 

  10. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:10.1021/nn102272n

    Article  Google Scholar 

  11. Bondarenko O, Ivask A, Käkinen A et al (2013) Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 8:e64060. doi:10.1371/journal.pone.0064060

    Article  Google Scholar 

  12. Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89. doi:10.1016/j.envpol.2012.05.009

    Article  Google Scholar 

  13. Perreault F, Oukarroum A, Melegari SP et al (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394. doi:10.1016/j.chemosphere.2012.02.046

    Article  Google Scholar 

  14. Gilbertson LM, Albalghiti EM, Fishman ZS et al (2016) Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ Sci Technol 50:3975–3984. doi:10.1021/acs.est.5b05734

    Article  Google Scholar 

  15. Chen CZ, Cooper SL (2000) Recent advances in antimicrobial dendrimers. Adv Mater 12:843–846. doi:10.1002/(SICI)1521-4095(200006)12:11<843::AID-ADMA843>3.0.CO;2-Tw

    Article  Google Scholar 

  16. Wang B, Navath RS, Menjoge AR et al (2010) Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int J Pharm 395:298–308. doi:10.1016/j.ijpharm.2010.05.030

    Article  Google Scholar 

  17. Perreault F, Melegari SP, Fuzinatto CF et al (2014) Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 29:328–336. doi:10.1002/tox.21761

    Article  Google Scholar 

  18. Tong T, Wilke CM, Wu J et al (2015) Combined toxicity of nano-zno and nano-TiO2: From single- to multinanomaterial systems. Environ Sci Technol 49:8113–8123. doi:10.1021/acs.est.5b02148

    Article  Google Scholar 

  19. Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798. doi:10.1021/am4053317

    Article  Google Scholar 

  20. Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12487–12495. doi:10.1021/es403079h

    Article  Google Scholar 

  21. Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134. doi:10.1038/srep04134

    Article  Google Scholar 

  22. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.1021/es801869m

    Article  Google Scholar 

  23. Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. doi:10.1021/nl0726398

    Article  Google Scholar 

  24. Natalio F, André R, Hartog AF et al (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7:530–535. doi:10.1038/nnano.2012.91

    Article  Google Scholar 

  25. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413. doi:10.1021/la800951v

    Article  Google Scholar 

  26. Pasquini LM, Sekol RC, Taylor AD et al (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783. doi:10.1021/es401786s

    Google Scholar 

  27. Perreault F, de Faria AF, Nejati S, Elimelech M (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9:7226–7236. doi:10.1021/ascnano.5b02067

    Article  Google Scholar 

  28. Liu S, Hu M, Zeng TH et al (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372. doi:10.1021/la3023908

    Article  Google Scholar 

  29. Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.1021/nn202451x

    Article  Google Scholar 

  30. Mangadlao JD, Santos CM, Felipe MJL et al (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem Commun 1:1–4. doi:10.1039/C4CC07836E

    Google Scholar 

  31. Mao J, Guo R, Yan L-T (2014) Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials 35:6069–6077. doi:10.1016/j.biomaterials.2014.03.087

    Article  Google Scholar 

  32. Wang J, Wei Y, Shi X, Gao H (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Adv 3:15776–15782. doi:10.1039/c3ra40392k

    Article  Google Scholar 

  33. Dallavalle M, Calvaresi M, Bottoni A et al (2015) Graphene can wreak havoc with cell membranes. ACS Appl Mater Interfaces 7:4406–4414. doi:10.1021/am508938u

    Article  Google Scholar 

  34. Guo R, Mao J, Yan L-T (2013) Computer simulation of cell entry of graphene nanosheet. Biomaterials 34:4296–4301. doi:10.1016/j.biomaterials.2013.02.047

    Article  Google Scholar 

  35. Li Y, Yuan H, von dem Bussche A et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. doi:10.1073/pnas.1222276110

    Article  Google Scholar 

  36. Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601. doi:10.1038/nnano.2013.125

    Article  Google Scholar 

  37. Lei H, Zhou X, Wu H et al (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683. doi:10.1021/la500788z

    Article  Google Scholar 

  38. Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. doi:10.1021/nl203107k

    Article  Google Scholar 

  39. Liu X, Chen KL (2015) Interactions of graphene oxide with model cell membranes: probing nanoparticle attachment and lipid bilayer disruption. Langmuir 31:12076–12086. doi:10.1021/acs.langmuir.5b02414

    Article  Google Scholar 

  40. Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880. doi:10.1021/es403864v

    Article  Google Scholar 

  41. Castrillón SR-V, Perreault F, de Faria AF, Elimelech M (2015) Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ Sci Technol Lett 2:112–117. doi:10.1021/acs.estlett.5b00066

    Article  Google Scholar 

  42. Perreault F, Faria AF, Elimelech M et al (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. doi:10.1039/C5CS00021A

    Article  Google Scholar 

  43. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565. doi:10.1021/sc500044p

    Article  Google Scholar 

  44. Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 71–76. doi:10.1021/ez4001356

    Google Scholar 

  45. Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.1039/c3nr04941h

    Article  Google Scholar 

  46. Pham VTH, Truong VK, Quinn MDJ et al (2015) Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 9:8458–8467. doi:10.1021/acsnano.5b03368

    Article  Google Scholar 

  47. Gurunathan S, Han JW, Dayem AA et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.2147/IJN.S37397

    Article  Google Scholar 

  48. Fuentes AM, Amábile-Cuevas CF (1998) Antioxidant vitamins C and E affect the superoxide-mediated induction of the soxRS regulon of Escherichia coli. Microbiology 144:1731–1736. doi:10.1099/00221287-144-7-1731

    Article  Google Scholar 

  49. Melegari SP, Perreault F, Moukha S et al (2012) Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in neuro 2A cells and Chlamydomonas reinhardtii alga. Chemosphere 89:38–43. doi:10.1016/j.chemosphere.2012.04.009

    Article  Google Scholar 

  50. Krishnamoorthy K, Veerapandian M, Zhang L, Yun K (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280−17287. doi:10.1021/jp3047054

    Google Scholar 

  51. Liu X, Sen S, Liu J et al (2011) Antioxidant deactivation on graphenic nanocarbon surfaces. Small 7:2775–2785. doi:10.1002/smll.201100651

    Article  Google Scholar 

  52. Yahraus T, Chandra S, Legendre L, Low PS (1995) Evidence for a mechanically induced oxidative burst. Plant Physiol 109:1259–1266. doi:10.1104/pp.109.4.1259

    Article  Google Scholar 

  53. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.1021/jp200686k

    Article  Google Scholar 

  54. Johnston HJ, Hutchison GR, Christensen FM et al (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182. doi:10.1093/toxsci/kfp265

    Article  Google Scholar 

  55. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. doi:10.1038/nmat2442

    Article  Google Scholar 

  56. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–1278. doi:10.1002/anie.201001037

    Article  Google Scholar 

  57. Hurum DC, Agrios AF, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.1021/Jp0273934

    Article  Google Scholar 

  58. Pasquini LM, Hashmi SM, Sommer TJ et al (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305. doi:10.1021/es300514s

    Article  Google Scholar 

  59. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/b917103g

    Article  Google Scholar 

  60. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736. doi:10.1021/nn101390x

    Article  Google Scholar 

  61. Gurunathan S, Han JW, Dayem AA et al (2013) Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 19:1280–1288. doi:10.1016/j.jiec.2012.12.029

    Article  Google Scholar 

  62. Das S, Singh S, Singh V et al (2013) Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Charact 30:148–157. doi:10.1002/ppsc.201200066

    Article  Google Scholar 

  63. Chng ELK, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chemistry 19:8227–8235. doi:10.1002/chem.201300824

    Article  Google Scholar 

  64. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. doi:10.1021/nl902741x

    Article  Google Scholar 

  65. Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28:802–816. doi:10.1016/j.biotechadv.2010.06.006

    Article  Google Scholar 

  66. Lin Y, Watson KA, Fallbach MJ et al (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884. doi:10.1021/nn8009097

    Article  Google Scholar 

  67. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470. doi:10.1016/j.jcis.2011.05.009

    Article  Google Scholar 

  68. Han Y, Luo Z, Yuwen L et al (2013) Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Appl Surf Sci 266:188–193. doi:10.1016/j.apsusc.2012.11.132

    Article  Google Scholar 

  69. Vijay Kumar S, Huang NM, Lim HN et al (2013) One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chem Eng J 219:217–224. doi:10.1016/j.cej.2012.09.063

    Article  Google Scholar 

  70. Soroush A, Ma W, Cyr M et al (2016) In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ Sci Technol Lett 3:13–18. doi:10.1021/acs.estlett.5b00304

    Article  Google Scholar 

  71. Cai X, Lin M, Tan S et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y 50:3407–3415. doi:10.1016/j.carbon.2012.02.002

    Article  Google Scholar 

  72. Kavitha T, Gopalan AI, Lee K-P, Park S-Y (2012) Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon N Y 50:2994–3000. doi:10.1016/j.carbon.2012.02.082

    Article  Google Scholar 

  73. He T, Liu H, Zhou Y et al (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27:673–682. doi:10.1007/s10534-014-9756-1

    Article  Google Scholar 

  74. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  75. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  Google Scholar 

  76. Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.1039/C5EN00086F

    Article  Google Scholar 

  77. Faria AF, Perreault F, Shaulsky E et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.1021/acsami.5b01639

    Article  Google Scholar 

  78. Li C, Wang X, Chen F et al (2013) The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34:3882–3890. doi:10.1016/j.biomaterials.2013.02.001

    Article  Google Scholar 

  79. Ahamed M, Alhadlaq HA, Khan MAM et al (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:1–4. doi:10.1155/2014/637858

    Article  Google Scholar 

  80. Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. doi:10.1021/es404232s

    Article  Google Scholar 

  81. Ouyang Y, Cai X, Shi Q et al (2013) Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B Biointerfaces 107:107–114. doi:10.1016/j.colsurfb.2013.01.073

    Article  Google Scholar 

  82. Karimi L, Yazdanshenas ME, Khajavi R et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827. doi:10.1007/s10570-014-0385-1

    Article  Google Scholar 

  83. Xu C, Cui A, Xu Y, Fu X (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon N Y 62:465–471. doi:10.1016/j.carbon.2013.06.035

    Article  Google Scholar 

  84. He W, Huang H, Yan J, Zhu J (2013) Photocatalytic and antibacterial properties of Au–TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701. doi:10.1063/1.4836875

    Article  Google Scholar 

  85. Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. doi:10.1039/c3ra43992e

    Google Scholar 

  86. Ullah K, Kim Y-H, Lee B-E et al (2014) Visible light induced catalytic properties of CdSe–graphene nanocomposites and study of its bactericidal effect. Chin Chem Lett 25:941–946. doi:10.1016/j.cclet.2014.03.050

    Article  Google Scholar 

  87. Ristic BZ, Milenkovic MM, Dakic IR et al (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35:4428–4435. doi:10.1016/j.biomaterials.2014.02.014

    Article  Google Scholar 

  88. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 186:921–931. doi:10.1016/j.jhazmat.2010.11.100

    Article  Google Scholar 

  89. Tian T, Shi X, Cheng L et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548. doi:10.1021/am5022914

    Article  Google Scholar 

  90. Wu M-C, Deokar AR, Liao J-H et al (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281–1290. doi:10.1021/nn304782d

    Article  Google Scholar 

  91. Santhosh C, Kollu P, Doshi S et al (2014) Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4:28300. doi:10.1039/c4ra02913e

    Article  Google Scholar 

  92. Deng C-H, Gong J-L, Zeng G-M et al (2014) Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. J Hazard Mater 276:66–76. doi:10.1016/j.jhazmat.2014.05.011

    Article  Google Scholar 

  93. Cai X, Tan S, Lin M et al (2011) Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27:7828–7835. doi:10.1021/la201499s

    Article  Google Scholar 

  94. Mejias Carpio IE, Mangadlao JD, Nguyen HN et al (2014) Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon N Y 77:289–301. doi:10.1016/j.carbon.2014.05.032

    Article  Google Scholar 

  95. Maktedar SS, Mehetre SS, Singh M, Kale RK (2014) Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason Sonochem 21:1407–1416. doi:10.1016/j.ultsonch.2014.02.022

    Article  Google Scholar 

  96. Some S, Ho SM, Dua P et al (2012) Dual functions of highly potent graphene derivative-poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161. doi:10.1021/nn302215y

    Article  Google Scholar 

  97. Yuan B, Zhu T, Zhang Z et al (2011) Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J Mater Chem 21:3471. doi:10.1039/c0jm03643a

    Article  Google Scholar 

  98. Zhu Z, Su M, Ma L et al (2013) Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Talanta 117:449–455. doi:10.1016/j.talanta.2013.09.017

    Article  Google Scholar 

  99. de Faria AF, Martinez DST, Meira SMM et al (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B Biointerfaces 113:115–124. doi:10.1016/j.colsurfb.2013.08.006

    Article  Google Scholar 

  100. Das MR, Sarma RK, Saikia R et al (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 83:16–22. doi:10.1016/j.colsurfb.2010.10.033

    Article  Google Scholar 

  101. Polte J, Tuaev X, Wuithschick M et al (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802. doi:10.1021/nn301724z

    Article  Google Scholar 

  102. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. doi:10.1021/cr400544s

    Article  Google Scholar 

  103. Liao H-G, Niu K, Zheng H (2013) Observation of growth of metal nanoparticles. Chem Commun 49:11720. doi:10.1039/c3cc47473a

    Article  Google Scholar 

  104. Tang X-Z, Li X, Cao Z et al (2013) Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon N Y 59:93–99. doi:10.1016/j.carbon.2013.02.058

    Article  Google Scholar 

  105. Das MR, Sarma RK, Borah SC et al (2013) The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf B Biointerfaces 105:128–136. doi:10.1016/j.colsurfb.2012.12.033

    Article  Google Scholar 

  106. Zhou Y, Yang J, He T et al (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454. doi:10.1002/smll.201202455

    Article  Google Scholar 

  107. Zhang Z, Xu F, Yang W et al (2011) A facile one-pot method to high-quality Ag–graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb) 47:6440–6442. doi:10.1039/c1cc11125f

    Article  Google Scholar 

  108. Yuan W, Gu Y, Li L (2012) Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci 261:753–758. doi:10.1016/j.apsusc.2012.08.094

    Article  Google Scholar 

  109. Barua S, Thakur S, Aidew L et al (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777. doi:10.1039/c3ra46835f

    Article  Google Scholar 

  110. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.1021/cr400407a

    Article  Google Scholar 

  111. Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. doi:10.1039/c2nr32092d

    Article  Google Scholar 

  112. Tang L, Livi KJT, Chen KL (2015) Polysulfone membranes modified with bioinspired polydopamine and silver nanoparticles formed in situ to mitigate biofouling. Environ Sci Technol Lett 2:59–65. doi:10.1021/acs.estlett.5b00008

    Article  Google Scholar 

  113. Nguyen VH, Kim B-K, Jo Y-L, Shim J-J (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J Supercrit Fluids 72:28–35. doi:10.1016/j.supflu.2012.08.005

    Article  Google Scholar 

  114. Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281. doi:10.1021/ja100938r

    Article  Google Scholar 

  115. Sehgal D, Vijay IK (1994) A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem 218:87–91. doi:10.1006/abio.1994.1144

    Article  Google Scholar 

  116. Lee JU, Lee W, Yoon SS et al (2014) Site-selective immobilization of gold nanoparticles on graphene sheets and its electrochemical properties. Appl Surf Sci 315:73–80. doi:10.1016/j.apsusc.2014.07.099

    Article  Google Scholar 

  117. Zhang D, Liu X, Wang X (2011) Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J Inorg Biochem 105:1181–1186. doi:10.1016/j.jinorgbio.2011.05.014

    Article  Google Scholar 

  118. de Faria AF, de Moraes ACM, Marcato PD et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16:2110. doi:10.1007/s11051-013-2110-7

    Article  Google Scholar 

  119. Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481. doi:10.1039/c2jm33398h

    Article  Google Scholar 

  120. Wahid MH, Stroeher UH, Eroglu E et al (2015) Aqueous based synthesis of antimicrobial-decorated graphene. J Colloid Interface Sci 443:88–96. doi:10.1016/j.jcis.2014.11.043

    Article  Google Scholar 

  121. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surfaces B Biointerfaces 79:5–18. doi:10.1016/j.colsurfb.2010.03.029

    Article  Google Scholar 

  122. Zhao J, Deng B, Lv M et al (2013) Graphene oxide-based antibacterial cotton fabrics. Adv Healthc Mater 2:1259–1266. doi:10.1002/adhm.201200437

    Article  Google Scholar 

  123. Yee KWK, Bao J, Wiley DE (2012) Dynamic operability analysis of an industrial membrane separation process. Chem Eng Sci 71:85–96. doi:10.1016/j.ces.2011.11.046

    Article  Google Scholar 

  124. Shamsuddin N, Das DB, Starov VM (2015) Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: circular cross-flow compared with stirred dead end flow. Chem Eng J 276:331–339. doi:10.1016/j.cej.2015.04.075

    Article  Google Scholar 

  125. Rautenbach R, Vossenkaul K, Linn T, Katz T (1997) Waste water treatment by membrane processes—new development in ultrafiltration, nanofiltration and reverse osmosis. Desalination 108:247–253. doi:10.1016/S0011-9164(97)00032-5

    Article  Google Scholar 

  126. Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Memb Sci 484:95–106. doi:10.1016/j.memsci.2015.03.011

    Article  Google Scholar 

  127. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. doi:10.1002/adma.201001215

    Article  Google Scholar 

  128. Elimelech M, Phillip WA (2011) The future of seawater and the environment: energy, technology, and the environment. Science 333:712–718. doi:10.1126/science.1200488

    Article  Google Scholar 

  129. Kochkodan V, Hilal N (2015) A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356:187–207. doi:10.1016/j.desal.2014.09.015

    Article  Google Scholar 

  130. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. doi:10.1021/cr800208y

    Article  Google Scholar 

  131. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials—an interdisciplinary review. Chem Res Toxicol 15–34. doi:10.1021/tx200339h

    Google Scholar 

  132. Chae H-RR, Lee J, Lee C-HH et al (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Memb Sci 483:128–135. doi:10.1016/j.memsci.2015.02.045

    Article  Google Scholar 

  133. He L, Dumée LF, Feng C et al (2015) Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365:126–135. doi:10.1016/j.desal.2015.02.032

    Article  Google Scholar 

  134. Perreault F, Jaramillo H, Xie M et al (2016) Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ Sci Technol. doi:10.1021/acs.est.5b06364

    Google Scholar 

  135. He L, Dumee LF, Feng C et al (2015) Promoted water transport across graphene oxide-poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365:126–135. doi:10.1016/j.desal.2015.02.032

    Article  Google Scholar 

  136. Lee J, Chae H, June Y et al (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J Memb Sci 448:223–230. doi:10.1016/j.memsci.2013.08.017

    Article  Google Scholar 

  137. Mahmoudi E, Yong L, Ba-abbad MM, Mohammad AW (2015) Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem Eng J 277:1–10. doi:10.1016/j.cej.2015.04.107

    Article  Google Scholar 

  138. Zhao C, Xu X, Chen J, Yang F (2013) Journal of Environmental Chemical Engineering Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Biochem Pharmacol 1:349–354. doi:10.1016/j.jece.2013.05.014

    Google Scholar 

  139. Zinadini S, Akbar A, Rahimi M, Vatanpour V (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Memb Sci 453:292–301. doi:10.1016/j.memsci.2013.10.070

    Article  Google Scholar 

  140. Ionita M, Pandele AM, Crica L, Pilan L (2014) Composites: part B Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Compos Part B 59:133–139. doi:10.1016/j.compositesb.2013.11.018

    Article  Google Scholar 

  141. Yin J, Zhu G, Deng B (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379:93–101. doi:10.1016/j.desal.2015.11.001

    Article  Google Scholar 

  142. Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5:12510–12519. doi:10.1021/am403790s

    Article  Google Scholar 

  143. Marselina Y, Le-clech P, Stuetz RM, Chen V (2009) Characterisation of membrane fouling deposition and removal by direct observation technique. J Memb Sci 341:163–171. doi:10.1016/j.memsci.2009.06.001

    Article  Google Scholar 

  144. Duan L, Wang Y, Zhang Y, Liu J (2015) Applied surface science graphene immobilized enzyme/ polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445. doi:10.1016/j.apsusc.2015.07.127

    Article  Google Scholar 

  145. Sun X, Qin J, Xia P et al (2015) Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem Eng J 281:53–59. doi:10.1016/j.cej.2015.06.059

    Article  Google Scholar 

  146. Gao Y, Hu M, Mi B (2014) Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. J Memb Sci 455:349–356. doi:10.1016/j.memsci.2014.01.011

    Article  Google Scholar 

  147. Jiang Y, Wang WN, Liu D et al (2015) Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol 49:6846–6854. doi:10.1021/acs.est.5b00904

    Article  Google Scholar 

  148. Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene. Sep Purif Technol 154:96–107. doi:10.1016/j.seppur.2015.09.039

    Article  Google Scholar 

  149. Zhao C, Xu X, Chen J, Yang F (2014) Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination 334:17–22. doi:10.1016/j.desal.2013.07.011

    Article  Google Scholar 

  150. Lee JJ, Chae H-R, Won YJ et al (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J Memb Sci 448:223–230. doi:10.1016/j.memsci.2013.08.017

    Article  Google Scholar 

  151. Zinadini S, Zinatizadeh AA, Rahimi M et al (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Memb Sci 453:292–301. doi:10.1016/j.memsci.2013.10.070

    Article  Google Scholar 

  152. Jin F, Lv W, Zhang C et al (2013) High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Adv 3:21394. doi:10.1039/c3ra42908c

    Article  Google Scholar 

  153. Xu Z, Zhang J, Shan M et al (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 458:1–13. doi:10.1016/j.memsci.2014.01.050

    Article  Google Scholar 

  154. Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Memb Sci 451:94–102. doi:10.1016/j.memsci.2013.09.018

    Article  Google Scholar 

  155. Yu L, Zhang Y, Zhang B et al (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Memb Sci 447:452–462. doi:10.1016/j.memsci.2013.07.042

    Article  Google Scholar 

  156. Zhang J, Xu Z, Shan M et al (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 448:81–92. doi:10.1016/j.memsci.2013.07.064

    Article  Google Scholar 

  157. Mahmoudi E, Ng LY, Ba-Abbad MM, Mohammad AW (2015) Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem Eng J 277:1–10. doi:10.1016/j.cej.2015.04.107

    Article  Google Scholar 

  158. Chae HR, Lee J, Lee CH et al (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Memb Sci 483:128–135. doi:10.1016/j.memsci.2015.02.045

    Article  Google Scholar 

  159. Hegab HM, ElMekawy A, Barclay TG et al (2015) Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl Mater Interfaces 7:18004–18016. doi:10.1021/acsami.5b04818

    Article  Google Scholar 

Download references

Acknowledgments

F.P. acknowledges the financial support from the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (ERC-1449500) and the Ira A. Fulton Schools of Engineering at Arizona State University. D.Z.R. acknowledges the support from the Arizona State University Fulton Schools of Engineering Deans Fellowship program. M.S.R. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing financial support for this project. A.S. acknowledges the support of a graduate entrance scholarship from Concordia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Perreault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soroush, A., Rice, D., Rahaman, M.S., Perreault, F. (2016). Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications. In: Gonçalves , G., Marques, P., Vila, M. (eds) Graphene-based Materials in Health and Environment. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-45639-3_10

Download citation

Publish with us

Policies and ethics