Skip to main content

Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity

  • Chapter

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 104))

Abstract

Phthalides are a relatively small group of natural compounds confined to several plant families and some genera of fungi and liverworts. They are divided into two structural groups, the monomeric and dimeric phthalides, and known mainly as bioactive constituents of different plant species used traditionally for medicinal purposes in Asia, Europe, and North America.

The first reports on the chemistry of phthalides appeared at the end of the nineteenth century, in which they were identified as the odor constituents of the essential oil of celery (Apium graveolens) by Ciamician and Silber (1897). In the first half of the last century, phthalides were isolated from Cnidium officinale and Ligusticum acutilobum, species widely used in Asian traditional medicine, and from Levisticum officinale, a species used as food and condiment. Throughout the second part of the twentieth century, phthalides have been characterized from several plant families, namely Asteraceae, Leguminosae, Orchidaceae and Rutaceae, among others, but mainly from the Umbelliferae (syn Apiaceae) family, and the major contributors have been the following species used in traditional medicine: Ligusticum chuanxiong (Chinese name: Chuanxiong), Angelica sinensis (Chinese name: Danggui), Cnidium officinale (Japanese name: Senkyu), Angelica acutiloba (Japanese name: Toki), and Ligusticum porteri (Hispanic name: Oshá). Phthalides are also constituents of several genera of fungi, such as Penicillium, Alternaria and Pestalotiopsis, and some liverworts.

Different chromatographic, spectrometric, and two-dimensional nuclear magnetic resonance (NMR) techniques have been used for the isolation and structural characterization of phthalides in extracts, and for assessing the quality of plant material containing this type of compound. Isotopic labeling has established the biosynthesis of phthalides via linkage of acetate units forming polyketide intermediates.

Chemical transformations of monomeric phthalides have included oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.

Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.

The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder–Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.

Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer’s and Parkinson’s diseases.

The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lin G, Chan SS-K, Chung H-S, Li S-L (2005) Chemistry and biological activities of naturally occurring phthalides. Stud Nat Prod Chem 32:611

    Article  CAS  Google Scholar 

  2. Beck JJ, Chou S-C (2007) The structural diversity of phthalides from the Apiaceae. J Nat Prod 70:891

    Article  PubMed  CAS  Google Scholar 

  3. Karmakar R, Pahari P, Mal D (2014) Phthalides and phthalans: synthetic methodologies and their applications in the total synthesis. Chem Rev 114:6213

    Article  PubMed  CAS  Google Scholar 

  4. Yang SZ (2007) The divine farmer’s Materia Medica. A translation of the Shen Nong Ben Cao Jing. Blue Poppy Press, Boulder, CO

    Google Scholar 

  5. Yao D, Zhang J, Chu L, Bao X, Shun Q, Qi P (1995) A colored atlas of the Chinese Materia Medica specified in pharmacopoeia of the People’s Republic of China. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  6. Chan SS-K, Yan R, Lin G (2013) Chuanxiong (Ligusticum cuanxiong). In: Li SP, Wang YT (eds) Pharmacological activity-based quality control of Chinese herbs. Nova Science, New York, p 273

    Google Scholar 

  7. Li W, Tang Y, Chen Y, Duan J (2012) The advance in chemical isolation and analysis of Chuanxiong. Molecules 17:10614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang L, Zhang J, Hong Y, Feng Y, Chen M, Wang Y (2013) Phytochemical and pharmacological review of Da Chanxiong formula: a famous herb pair composed of Chuanxiong Rhizoma and Gastrodiae Rhizoma for headache. Evid Based Complement Altern Med Article ID 425369

    Google Scholar 

  9. Seiz de Lira BJ (1777) Descripción geográfica de Guazápares. Vol II. Relaciones topográficas de los pueblos de México. Biblioteca Nacional, Madrid, MS 2450

    Google Scholar 

  10. Appelt GD (1985) Pharmacological aspects of selected herbs employed in Hispanic folk medicine in the San Luis Valley of Colorado, USA: I. Ligusticum porteri (Osha) and Matricaria chamomilla (Manzanilla). J Ethnopharmacol 13:51

    Article  PubMed  CAS  Google Scholar 

  11. Bye RA, Linares E (1986) Ethnobotanical notes from the Valley of San Luis, Colorado (USA). J Ethnobiol 6:289

    Google Scholar 

  12. Linares E, Bye RA (1987) A study of four medicinal plant complexes of Mexico and adjacent United States. J Ethnopharmacol 19:153

    Article  PubMed  CAS  Google Scholar 

  13. Newton P (1992) Can animals teach us medicine? Over the counter and into the forest. Br Med J 305:1517

    Article  CAS  Google Scholar 

  14. Ciamician G, Silber P (1897) Ueber die hochsiedenden Bestandtheile des Sellerieöls. Ber Dtsch Pharm 30:492

    CAS  Google Scholar 

  15. Cichy M, Höfle G (1897) Ueber die Spaltungs-producte der Sedanonsäure. Ber Dtsch Pharm 30:501

    Google Scholar 

  16. Ciamician G, Silber P (1897) Ueber die Sedanolsäure. Ber Dtsch Pharm 30:1424

    CAS  Google Scholar 

  17. Ciamician G, Silber P (1897) Ueber die Sedanolsäure und das Sedanolid. Ber Dtsch Pharm 30:1427

    CAS  Google Scholar 

  18. Ciamician G, Silber P (1898) Studi sui principii dell’essenza di sedano. Gazz Chim Ital 1:438

    Google Scholar 

  19. Barton DHR, DeVries JX (1963) The constitution of sedanolide. J Chem Soc C:1916

    Google Scholar 

  20. Swenholt J (1910) Oil of celery seed. Midl Drug Pharm Rev 44:220

    CAS  Google Scholar 

  21. Berlingozzi S, Mazza FP (1926) Sulle idroftalidi. I. Azione dei magnesio-iodo-alchili sull’anidride-d-tetraidroftalica. Gazz Chim Ital 56:88

    CAS  Google Scholar 

  22. Berlingozzi S, Cione L (1927) Sulle idroftalidi. II. Azione de l’amalgama di sodio sule monoalchiliden-ftalidi. Gazz Chim Ital 57:243

    CAS  Google Scholar 

  23. Berlingozzi S (1927) Sulle idroftalidi. III. Derivati della d-diidroftalidi. Gazz Chim Ital 57:248

    CAS  Google Scholar 

  24. Berlingozzi S, Lupo G (1927) Sulle idroftalidi. IV. Sul derivato n-butilico della tetraidroftalide. Gazz Chim Ital 57:255

    CAS  Google Scholar 

  25. Berlingozzi S (1927) Sulle idroftalidi. V. Contributo allo studio dei rapporti fra costituzione e odore. Gazz Chim Ital 57:264

    CAS  Google Scholar 

  26. Murayama Y, Itakagi T (1923) Chemical constituents of a Chinese drug “Hsiung- Ch’uang”. II. J Pharm Soc Jpn 43:143

    Article  Google Scholar 

  27. Noguchi T (1934) Beitrage zur Kenntnis der chemischen Bestandteile von Sen-Kyu. J Pharm Soc Jpn 54:913

    Article  CAS  Google Scholar 

  28. Murayama IY (1921) Chemical constituents of a Chinese drug “Hsiung-Ch’uang”. J Pharm Soc Jpn 41:951

    Google Scholar 

  29. Kariyone T, Kotani M (1937) Constituents of the fruits of Ligusticum acutilobum. III. J Pharm Soc Jpn 57:183

    CAS  Google Scholar 

  30. Noguchi T, Fujita S, Kawanami M (1937) Über die Bestandteile der Wurzel von Ligusticum actilobum. I. J Pharm Soc Jpn 57:769

    Article  Google Scholar 

  31. Noguchi T, Kawanami M (1937) Über die Bestandteile der Wurzel von Ligusticum actilobum II, IV. Mitteil. Zur Kenntnis der chemischen Bestandteile der Umbelliferae. J Pharm Soc Jpn 57:783

    Google Scholar 

  32. Noguchi T, Kawanami M (1937) Über die Dehydrierungsprodukte des Sedanolid, Cnidiumlacton und Sedanonsäure. J Pharm Soc Jpn 57:778

    Article  Google Scholar 

  33. Naves YR (1943) Études sur les matières vegetales volatiles XXIV. Composition de l’huile essentiele et du résinoïde de livéche (Levisticum officinale Koch). Helv Chim Acta 26:1281

    Article  CAS  Google Scholar 

  34. Takahashi S, Hikino H, Sasaki Y (1958) Pharmacognostical components of Umbelliferous plants IX. Toki 9. Components of the roots of Angelica acutiloba and A. acutiloba var. sugiyamae. J Pharm Soc Jpn 79:1156

    Google Scholar 

  35. Mitsuhashi H, Nagai U (1963) Studies on the constituents of Umbelliferae. VII. Structure of ligustilide. Tetrahedron 19:1277

    Article  CAS  Google Scholar 

  36. Mitsuhashi H, Muramatsu T (1964) Studies on the constituents of Umbelliferae plants. IX: Structure of cnidilide and neocnidilide. Tetrahedron 20:1971

    Article  CAS  Google Scholar 

  37. Nagai U, Mitsuhashi H (1965) Constituents of Umbelliferae plants. X. Stereochemistry of 3-butylhydrophthalides. Tetrahedron 21:1433

    Article  CAS  Google Scholar 

  38. Nagai U, Shishido T, Chiba R, Mitsuhashi H (1965) Constituents of Umbelliferae plants. XI. Stereochemistry of 3-butylhydrophthalides. Tetrahedron 21:1701

    Article  CAS  Google Scholar 

  39. Cocker W, McMurry TBH, Sainsbury DM (1966) Synthesis of certain n-butyltetra- and hexa-hydrophthalides. J Chem Soc C:1152

    Google Scholar 

  40. Stahl E, Bohrmann H (1966) Phthalide als Hauptbestandteile des Ätherischen Öls der Früchte von Meum athamanticum. Naturwissenschaften 110:118

    Google Scholar 

  41. Bohrmann H, Stahl E, Mitsuhashi H (1967) Studies of the constituents of Umbelliferae plants. XIII. Chromatographic studies on the constituents of Cnidium officinale Makino. Chem Pharm Bull 15:1606

    Article  CAS  Google Scholar 

  42. Gold J, Wilson CW (1963) Alkylidene phthalides and dihydrophthalides from celery. J Org Chem 28:985

    Article  CAS  Google Scholar 

  43. Wilson CW (1970) Relative recovery and identification of carbonyl compounds from celery essential oil. J Food Sci 35:766

    Article  CAS  Google Scholar 

  44. Bjeldanes LF, Kim IS (1977) Phthalide components of celery essential oil. J Org Chem 42:2333

    Article  CAS  Google Scholar 

  45. Saiki Y, Okamoto (née Suzuki) M, Ueno A, Uchida M, Fukushima S (1970) Gas chromatographical studies on natural volatile oils. VIII. On the essential oils of Chinese Medicine “Gaoben.” J Pharm Soc Jpn 90:344

    Google Scholar 

  46. Yamagishi T, Kaneshima H (1977) Constituents of Cnidium officinale Makino. Structure of senkyunolide and gas chromatography-mass spectrometry of the related phthalides. J Pharm Soc Jpn 97:237

    Article  PubMed  CAS  Google Scholar 

  47. Gijbels MJM, Scheffer JJC, Baerheim Svendsen A (1979) Phthalides in Umbelliferae. Riv Ital EPPOS 61:335

    CAS  Google Scholar 

  48. Fehr D (1979) Study on the aroma substances of celery (Apium graveolens L.). Part I. Pharmazie 34:658

    CAS  Google Scholar 

  49. Fehr D (1981) Study on the aroma substances of celery (Apium graveolens L.). Part 2. Pharmazie 36:374

    CAS  Google Scholar 

  50. Gijbels MJM, Scheffer JJC, Baerheim Svendsen A (1981) Analysis of phthalides from Umbelliferae by combined liquid-solid and gas-liquid chromatography. Chromatographia 14:452

    Article  CAS  Google Scholar 

  51. Banerjee SK, Gupta BD, Sheldrick WS, Höfle G (1982) Angeolide, a novel lactone from Angelica glauca. Liebigs Ann Chem:699

    Google Scholar 

  52. Gijbels MJM, Scheffer JJC, Svendsen Baerheim A (1982) Phthalides in roots of Cenolophium denudatum and in roots, herb and fruits of Coriandrum sativum. Fitoterapia 53:17

    CAS  Google Scholar 

  53. Gijbels MJM, Scheffer JJC, Baerheim Svendsen A (1982) Phthalides in the essential oil from roots of Levisticum officinale. Planta Med 44:207

    Article  PubMed  CAS  Google Scholar 

  54. Gijbels MJM, Scheffer JJC, Baerheim Svendsen A (1982) Phthalides in roots of Silaum silaus (L.) Schinz et Thell. Sci Pharm 50:158

    CAS  Google Scholar 

  55. Gijbels MJM, Fischer FC, Scheffer JJC, Baerheim Svendsen A (1983) Phthalides in roots of Anethum graveolens and Todaroa montana. Sci Pharm 51:414

    CAS  Google Scholar 

  56. Kaouadji M, Puech-Baronnat M, Mariot A-M (1983) (Z)-Ligustidiol, nouveau phthalide hydroxyle isole de Ligusticum wallichii Franch. Tetrahedron Lett 24:4675

    Google Scholar 

  57. Kaouadji M, Reutenauer H, Chulia AJ, Marsura A (1983) (Z,Z′)-Diligustilide, noveau phthalide dimere isole de Ligusticum wallichii Franch. Tetrahedron Lett 24:4677

    Google Scholar 

  58. Meng Y, Wang Q, Zhang H, Chen Y, Fab Y, Wang F (1984) Molecular structure of riligustilide. Lanzhou Daxue Xuebao, Ziram Kexueban 19:76 (Chem Abstr 100:135781j)

    Google Scholar 

  59. Wang P, Guo X, Wang Y, Fukuyama Y, Miura I, Sugawara M (1984) Phthalides from the rhizome of Ligusticum wallichii. Phytochemistry 23:2033

    Article  CAS  Google Scholar 

  60. Kobayashi M, Fujita M, Mitsuhashi H (1984) Components of Cnidium officinale Makino: occurrence of pregnenolone, coniferyl ferulate, and hydroxyphthalides. Chem Pharm Bull 32:3770

    Article  CAS  Google Scholar 

  61. Gijbels MJ, Fischer FC, Scheffer JJ, Baerheim Svendsen A (1984) Phthalides in roots of Capnophyllum peregrinum and Peucedanum ostruthium. Planta Med 50:110

    Article  PubMed  CAS  Google Scholar 

  62. Puech-Baronnat M, Kaouadji M, Mariotte AM (1984) (Z)-5-Hydroxy- and (Z)-4,5-dihydroxybutylidene-3-phthalides, new compounds isolated from Ligusticum wallichii. Planta Med 50:105

    Article  PubMed  CAS  Google Scholar 

  63. Cichy M, Wray V, Höfle G (1984) Neue Inhaltsstoffe von Levisticum officinale Koch Liebstöckel. Liebigs Ann Chem:397

    Google Scholar 

  64. Banerjee SK, Gupta BD, Sheldrick WS, Höfle G (1984) Lactonic constituents of Angelica glauca. Liebigs Ann Chem:888

    Google Scholar 

  65. Kaouadji M, Mariotte AM, Reutenauer H (1984) Phthalide derivatives from Meum athamanticum Jacq. Z Naturforsch C 39C:872

    Article  CAS  Google Scholar 

  66. Kaouadji M, Pouget C, Kaouadji M (1986) Additional phthalide derivatives from Meum athamanticum. J Nat Prod 49:184

    Article  CAS  Google Scholar 

  67. Gijbels MJM, Fischer FC, Scheffer JJC, Baerheim Svendsen A (1985) Phthalides in roots of Apium graveolens, A. graveolens var. rapaceum, Bifora testiculata and Petroselinum crispum var. tuberosum. Fitoterapia 56:17

    CAS  Google Scholar 

  68. Sheu SJ, Ho YS, Chen YP, Hsu HY (1987) Analysis and processing of Chinese herbal drugs: VI. The study of Angelicae Radix. Planta Med 53:377

    Article  PubMed  CAS  Google Scholar 

  69. Kaouadji M, De Pachtere F, Pouget C, Chulia A, Lavaitte S (1986) Three additional phthalide derivatives, an epoxymonomer and two dimers from Ligusticum wallichii rhizomes. J Nat Prod 49:872

    Article  CAS  Google Scholar 

  70. Delgado G, Reza-Garduño RG, Toscano RA, Bye R, Linares E (1988) Secondary metabolites from the roots of Ligusticum porteri (Umbelliferae). X-ray structure of Z-6.6′,7,3′a-diligustilide. Heterocycles 27:1305

    Article  CAS  Google Scholar 

  71. Naito T, Katsuhara T, Niitsu K, Ikeya Y, Okada M, Mitsuhashi H (1991) Phthalide dimers from Ligusticum chuangxiong Hort. Heterocycles 32:2433

    Article  CAS  Google Scholar 

  72. Tsuchida T, Kobayashi M, Kaneko K, Mitsuhashi H (1987) Studies on the constituents of Umbelliferae plants. XVI. Isolation and structures of three new ligustilide derivatives from Angelica acutiloba. Chem Pharm Bull 35:4460

    Article  CAS  Google Scholar 

  73. Kobayashi M, Mitsuhashi H (1987) Studies on the constituents of Umbelliferae plants XVII. Structures of three new ligustilide derivatives from Ligusticum wallichii. Chem Pharm Bull 35:4789

    Article  CAS  Google Scholar 

  74. Fischer FC, Gijbels MJM (1987) cis- and trans-Neocnidilide; 1H- and 13C-NMR data of some phthalides. Planta Med 53:77

    Article  PubMed  CAS  Google Scholar 

  75. Segebrecht S, Schilcher H (1989) Ligustilide: guiding component for preparations of Levisticum officinale roots. Planta Med 55:572

    Article  PubMed  CAS  Google Scholar 

  76. Szebeni-Galambosi Z, Galambosi B, Holm Y (1992) Growth, yield and essential oil of lovage grown in Finland. J Essent Oil Res 4:375

    Article  CAS  Google Scholar 

  77. Abdel-Mogib M, Ayyad SN, Metwally MA, Dawidar AM (1992) Lactones from Pituranthos tortusus (Apiaceae). Pak J Sci Ind Res 35:93

    CAS  Google Scholar 

  78. Delgado G, Reza-Garduño RG, Ríos MY, del Río F (1992) Phthalides and monoterpenes of the hexane of the roots of Ligusticum porteri. Planta Med 58:570

    Article  PubMed  CAS  Google Scholar 

  79. MacLeod AJ, Macleod G, Snyder CH (1988) Volatile aroma constituents of celery. Phytochemistry 27:373

    Article  CAS  Google Scholar 

  80. MacLeod G, Ames JM (1989) Volatile components of celery and celeriac. Phytochemistry 28:1817

    Article  CAS  Google Scholar 

  81. Van Wassenhove F, Dirinck P, Ghent B, Vulsteke G (1990) Aromatic volatile composition of celery and celeriac cultivars. HortScience 25:556

    Article  Google Scholar 

  82. Tang J, Station AE, Brunswick N (1990) Free and glycosidically bound volatile compounds in fresh celery. J Agric Food Chem 38:1937

    Article  CAS  Google Scholar 

  83. Van Wassenhove FA, Dirinck PJ, Schamp NM, Vulstekel GA (1990) Effect of nitrogen fertilizers on celery volatiles. J Agric Food Chem 38:220

    Article  Google Scholar 

  84. Maruhashi M, Hanada K, Misogami K, Nagakura A (1992) Novel phthalide derivative as NGF enhancer from Apium graveolens. Jpn Kokai Tokkyo Koho JP 04334378 A 19921120 (Chem Abstr 118:240924)

    Google Scholar 

  85. Nitz S, Spraul MH, Drawert F (1992) 3-Butyl-5,6-dihydro-4H-isobenzofuranone, a sensorial active phthalide in parsley roots. J Agric Food Chem 40:1038

    Article  CAS  Google Scholar 

  86. Hon P, Lee C, Choang F, Chui K, Wong HNC (1990) A ligustilide dimer from Angelica sinensis. Phytochemistry 29:1189

    Article  CAS  Google Scholar 

  87. Naito T, Katsuhara T, Niitsu K, Ikeya Y, Okada M, Mitsuhashi H (1992) Two phthalides from Ligusticum chuanxiong. Phytochemistry 31:639

    Article  CAS  Google Scholar 

  88. Naito T, Niitsu K, Ikeya Y, Okada M, Mitsuhashi H (1992) A phthalide and 2-farnesyl-6-methyl benzoquinone from Ligusticum chuanxiong. Phytochemistry 31:1787

    Article  CAS  Google Scholar 

  89. Beck JJ, Stermitz FR (1995) Addition of methyl thioglycolate and benzylamine to (Z)-ligustilide, a bioactive unsaturated lactone constituent of several herbal medicines. An improved synthesis of (Z)-ligustilide. J Nat Prod 58:1047

    Article  PubMed  CAS  Google Scholar 

  90. Brandt JJ, Schultze W (1995) Composition of the essential oils of Ligusticum mutellina (L.) Crantz (Apiaceae). J Essent Oil Res 7:231

    Article  CAS  Google Scholar 

  91. Dung NX, Cu LD, Moi LD, Leclerck PA (1996) Composition of the leaf and flower oils from Angelica sinensis (Oliv.) Diels cultivated in Vietnam. J Essent Oil Res 8:503

    Google Scholar 

  92. Kaul PN, Mallavarapu GR, Chamoli RP (1996) The essential oil composition of Angelica glauca roots. Planta Med 62:80

    Article  PubMed  CAS  Google Scholar 

  93. Naito T, Ikeya Y, Okada M, Mistuhashi H, Maruno M (1996) Two phthalides from Ligusticum chuangxiong. Phytochemistry 41:233

    Article  CAS  Google Scholar 

  94. Bartschat D, Maas B, Smietana S, Mosandl A, Lebensmittelchemie I, Frankfurt JWG (1996) Stereoisomeric flavour compounds LXXIII: 3-butylphthalide: chirospecific analysis, structure and properties of the enantiomers. Phytochem Anal 7:131

    Article  CAS  Google Scholar 

  95. Bartschat D, Beck T, Mosandl A (1997) Stereoisomeric flavor compounds. 79. Simultaneous enantioselective analysis of 3-butylphthalide and 3-butylhexahydrophthalide stereoisomers in celery, celeriac, and fennel. J Agric Food Chem 45:4554

    Article  CAS  Google Scholar 

  96. Bylaité E, Venskutonis RP, Roozen JP (1998) Influence of harvesting time on the composition of volatile components in different anatomical parts of lovage (Levisticum officinale Koch.). J Agric Food Chem 46:3735

    Article  Google Scholar 

  97. Bedrossian A, Beauchamp PE, Dev V, Kwan S, Munevar-Mendoza E, Okoreeh E (1998) Composition of the essential oil of Lomatium torreyi. J Essent Oil Res 10:473

    Article  CAS  Google Scholar 

  98. Tirillini B, Pellegrino R, Menghini A, Tomaselli B (1999) Essential oil components in the epigeous and hypogeous parts of Meum athamanticum Jacq. J Essent Oil Res 11:251

    Article  CAS  Google Scholar 

  99. Choudhury S, Rajkhowa A, Dutta S, Kanjilal PB, Sharma RK, Leclercq PA (2000) Volatile seed oils of Trachyspermum roxburghianum Benth. ex Kurz. from India. J Essent Oil Res 12:731

    Article  CAS  Google Scholar 

  100. Gillespie SG, Duszynski J (1998) Phthalides and monoterpenes of the hexane extracts of the roots of Ligusticum porteri, L. filicinum and L. tenuifolium. Planta Med 64:1998

    Article  PubMed  CAS  Google Scholar 

  101. Hagemeier J, Batz O, Schmidt J, Wray V, Hahlbrock K, Strack D (1999) Accumulation of phthalides in elicitor-treated cell suspension cultures of Petroselinum crispum. Phytochemistry 51:629

    Article  CAS  Google Scholar 

  102. Kitajima J, Ishikawa T, Satoh M (2003) Polar constituents of celery seed. Phytochemistry 64:1003

    Article  PubMed  CAS  Google Scholar 

  103. Li Y, Peng S, Zhou Y, Yu K-B, Ding L-S (2006) Two new phthalides from Ligusticum chuanxiong. Planta Med 72:652

    Article  PubMed  CAS  Google Scholar 

  104. Ka MH, Choi EH, Chun HS, Li KG (2005) Antioxidant activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J Agric Food Chem 53:4124

    Article  PubMed  CAS  Google Scholar 

  105. Palá-Paúl J, Garc R (2004) Essential oil composition of the leaves and stems of Meum athamanticum Jacq., from Spain. J Chromatogr 1036:245

    Article  CAS  Google Scholar 

  106. Lim LS, Shen P, Gong YH, Yong EL (2006) Dimeric progestins from rhizomes of Ligusticum chuanxiong. Phytochemistry 67:728

    Article  PubMed  CAS  Google Scholar 

  107. Wen Y, He S, Xue K, Cao F (1986) Chemical components of Ligusticum chuanxiong. Zhongcaoyao 17:122

    CAS  Google Scholar 

  108. Ogawa Y, Hosaka K, Chin M, Mitsuhashi H (1989) Synthesis of (-)-3-butyl-4-hydroxyphthalide. Heterocycles 29:865

    Article  CAS  Google Scholar 

  109. Deng S, Chen SN, Lu J, Wang ZJ, Nikolic D, van Breemen RB, Santarsiero BD, Mesecar A, Fong HHS, Farnsworth NR, Pauli GF (2006) GABAergic phthalide dimers from Angelica sinensis (Oliv.) Diels. Phytochem Anal 17:398

    Article  PubMed  CAS  Google Scholar 

  110. Deng S, Chen SN, Yao P, Nikolic D, van Breemen RB, Bolton JL, Fong HHS, Farnsworth NR, Pauli GF (2006) Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J Nat Prod 69:536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lü J-L, Duan J-A, Tang Y-P, Yang N-Y, Zhang L-B (2009) Phthalide mono- and dimers from the radix of Angelica sinensis. Biochem Syst Ecol 37:405

    Article  CAS  Google Scholar 

  112. Chang X-L, Jiang Z-Y, Ma Y-B, Zhang X-M, Tsim KWK, Chen J-J (2009) Two new compounds from the roots of Ligusticum chuanxiong. J Asian Nat Prod Res 11:805

    Article  PubMed  CAS  Google Scholar 

  113. Li W, Tang Y, Chen Y, Duan J-A (2012) Advances in the chemical analysis and biological activities of Chuanxiong. Molecules 17:10614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ran X, Ma L, Peng C, Zhang H, Qin L-P (2011) Ligusticum chuanxiong Hort.: a review of chemistry and pharmacology. Pharm Biol 49:1180

    Article  PubMed  CAS  Google Scholar 

  115. Huang J, Lu XQ, Zhang C, Lu J, Li GY, Lin RC, Wang JH (2013) Anti-inflammatory ligustilides from Ligusticum chuanxiong Hort. Fitoterapia 91:21

    Article  PubMed  CAS  Google Scholar 

  116. Wei Q, Yang J, Ren J, Wang A, Ji T, Su Y (2014) Bioactive phthalides from Ligusticum sinense Oliv. cv. chaxiong. Fitoterapia 93:226

    Article  PubMed  CAS  Google Scholar 

  117. Yang J-B, Wang A-G, Wei Q, Ren J, Ma S-C, Su Y-L (2014) New dimeric phthalides from Ligusticum sinense Oliv. cv. chaxiong. J Asian Nat Prod Res 16:747

    Article  PubMed  CAS  Google Scholar 

  118. León A, Toscano RA, Cogordán JA, Delgado G (2010) Differentiated cyclization of the ketoacid derived from tokinolide B. Heterocycles 82:1567

    Article  CAS  Google Scholar 

  119. Niu Y, Wang S (2014) A new phthalide from Angelica sinensis radix. China J Chin Mater Med 39:80

    Google Scholar 

  120. Raeisi S, Mirjalili MH, Nadjafi F, Hadian J (2015) Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff. (Apiaceae) growing wild in Iran. J Essent Oil Res 27:283

    Article  CAS  Google Scholar 

  121. Inouye H, Okuda T, Hirata Y, Nagakura N, Yoshizaki M (1967) Structure of catalpalactone, a new phthalide from catalpa wood. Chem Pharm Bull 15:786

    Article  Google Scholar 

  122. Inouye H, Okuda T, Hayashi T (1975) Quinones and related compounds in higher plants. II. On the naphthoquinones and related compounds from catalpa wood. Chem Pharm Bull 23:384

    Article  CAS  Google Scholar 

  123. Fujiwara A, Mori T, Iida A, Ueda S, Hano Y, Nomura T, Tokuda H, Nishino H (1998) Antitumor-promoting naphthoquinones from Catalpa ovata. J Nat Prod 61:629

    Article  PubMed  CAS  Google Scholar 

  124. Bregaoui A, Boughallleb N, Ben Jannet H, Harzallah-Shiric F, El Mahjoub M, Mighri Z (2007) Chemical composition and antifungal activity of volatiles from three Opuntia species growing in Tunisia. Pak J Biol Sci 10:2485

    Google Scholar 

  125. Opitz L, Hansel R (1971) Phthalide aus Helichrysum italicum. Arch Pharm 304:228

    Article  CAS  Google Scholar 

  126. Zapesochnaya GG, Dzyadevich TV, Karasartov BS (1990) Phenolic compounds of Helichrysum italicum. Chem Nat Compd 26:342

    Article  Google Scholar 

  127. Vrkoč J, Ubik K, Sedmera P, Vrkoč J, Ubik K, Sedmera P (1973) Phenolic extractives from the achenes of Helichrysum arenarium. Phytochemistry 12:2062

    Article  Google Scholar 

  128. Vrkoč J, Buděšínský M, Dolejš L, Vašíčková S (1975) Arenophthalide A: a new phthalide glycoside from Helichrysum arenarium roots. Phytochemistry 14:1845

    Article  Google Scholar 

  129. Jakupovic J, Schuster A, Sun H, Bohlmann F, Bhakuni DS (1987) Prenylated phthalides from Anaphalis araneosa and Helichrysum platypterum. Phytochemistry 26:580

    Article  CAS  Google Scholar 

  130. Venditti A, Lattanzi C, Ornano L, Maggi F, Sanna C, Ballero M, Alvino A, Serafini M, Bianco A (2016) A new glucosidic phthalide from Helichrysum microphyllum subsp. tyrrhenicum from La Maddalena Island (Sardinia, Italy). Nat Prod Res 30:789

    Article  PubMed  CAS  Google Scholar 

  131. Talapatra B, Roy MK, Talapatra SK (1980) Structures of two new phthalides from Anaphalis contorta Hook f. Indian J Chem B 19B:927

    CAS  Google Scholar 

  132. Tada M, Chiba K (1984) Novel plant growth inhibitors and an insect antifeedant from Chrysanthemum coronarium (Japanese name: Shungiku). Agric Biol Chem 48:1367

    CAS  Google Scholar 

  133. Sari A, Zidorn C, Ellmerer EP, Özgökçe F, Ongania KH, Stuppner H (2007) Phenolic compounds from Scorzonera tomentosa L. Helv Chim Acta 90:311

    Article  CAS  Google Scholar 

  134. Zheng X-P, Cui Q-F, Zhao J-F, Yang L-J, Zhang H-B, Yang X-D, Li L (2014) Three new phthalides from Gnaphalium adnatum. Helv Chim Acta 97:1638

    Article  CAS  Google Scholar 

  135. Blaskó G, Hussain SF, Shamma M (1981) (–)-Corlunmine, a new phthalideisoquinoline alkaloid from Fumaria parviflora. J Nat Prod 44:475

    Article  Google Scholar 

  136. Chulia AJ, Kaouadji M, Mariotte A-M (1989) Pedicelloside, nouveau phtalide isole de Gentiana pedicellata Wall. Tetrahedron Lett 25:5039

    Article  Google Scholar 

  137. Chulia AJ, Garcia J, Mariotte A-M (1986) New phthalide glycoside from Gentiana pedicellata. J Nat Prod 49:514

    Article  CAS  Google Scholar 

  138. Garcia J, Mpondo Mpondo E, Chulia AJ, Kaouadji M, Cartier G (1989) Two phthalide glucosides from Gentiana pyrenaica. Phytochemistry 28:1759

    Article  CAS  Google Scholar 

  139. Fukuhara K, Fujimori T, Shigematsu H, Ohnishi A (1987) Essential oil of Scutellaria baicalensis G. Agric Biol Chem 51:1449

    CAS  Google Scholar 

  140. Malan E, Roux DG (1974) (+)-2,3-trans-Pubeschin, the first catechin analogue of peltogynoids from Peltogyne pubescens and P. venosa. Phytochemistry 13:1575

    Article  CAS  Google Scholar 

  141. Nakano Y, Takasima T (1975) Extractives of Albizzia julibrissin heartwood. Mokuzai Gakkaishi 21:577

    CAS  Google Scholar 

  142. Okorie DA (1976) A new phthalide and xanthones from Anthochleista djalonensis and Anthochleista vogelli. Phytochemistry 15:1799

    Article  CAS  Google Scholar 

  143. Kameoka H, Miyazawwa M, Haze K (1975) 3-Ethyl-7-hydroxyphthalide from Forsythia japonica. Phytochemistry 14:1676

    Article  CAS  Google Scholar 

  144. Shao P, Zhang X, Li B, Jiao W, Wu L, Yao X-S (2010) New isocoumarin and phthalide derivatives from the rhizomes of Matteuccia orientalis. Chem Pharm Bull 58:1650

    Article  CAS  Google Scholar 

  145. Inubushi Y, Tsuda Y, Konita T, Matsumoto S (1964) Shihuhine: a new phthalide-pyrrolidine alkaloid. Chem Pharm Bull 12:749

    Article  CAS  Google Scholar 

  146. Inubushi Y, Tsuda Y, Konita T, Matsumoto S (1968) The structure of shihunine, a new phthalide-pyrrolidine alkaloid. Chem Pharm Bull 16:1014

    Article  CAS  Google Scholar 

  147. Elander M, Leander K, Lüning B (1969) Studies on Orchidaceae alkaloids XIV. A phthalide alkaloid from Dendrobium pierardii Roxb. Acta Chem Scand 23:2177

    Article  CAS  Google Scholar 

  148. Elander M, Gawell L, Leander K (1971) Studies on Orchidaceae alkaloids XXII. Synthesis and absolute configuration of pierardine, lactone-betaine isomerization of shihunine. Acta Chem Scand 25:721

    Article  PubMed  CAS  Google Scholar 

  149. Lee C, Choe S, Lee JW, Jin Q, Lee MK, Hwang BY (2013) Alkaloids from Papaver setigerum. Bull Kor Chem Soc 34:1290

    Article  CAS  Google Scholar 

  150. Chou TH, Chen IS, Hwang TL, Wang TC, Lee TH, Cheng LY, Chang YC, Cho JY, Chen JJ (2008) Phthalides from Pittosporum illicioides var. illicioides with inhibitory selectivity on superoxide generation and elastase release by neutrophils. J Nat Prod 71:1692

    Article  PubMed  CAS  Google Scholar 

  151. Takahashi H, Tsubuki T, Higashiyama K (1991) Highly diastereoselective reaction of chiral o-[2-(1,3-oxazolidinyl)]benzaldehydes with alkylmetallic reagents: synthesis of chiral 3-substituted phthalides. Chem Pharm Bull 39:3136

    Article  CAS  Google Scholar 

  152. Knights BA (1966) Isolation of 4-hydroxyphthalide from oat grain. Nature 210:1261

    Article  PubMed  CAS  Google Scholar 

  153. Grech JN, Li Q, Roufogalis BD, Duke CC (1994) Novel Ca2+-ATPase inhibitors from the dried root tubers of Polygonum multiflorum. J Nat Prod 57:1682

    Article  PubMed  CAS  Google Scholar 

  154. Yoshikawa M, Uchida E, Chatani N, Murakami N, Yamahara J (1992) Thunberginols A, B, and F, new antiallergic and antimicrobial principles from Hydrangeae Dulcis Folium. Chem Pharm Bull 40:3121

    Article  CAS  Google Scholar 

  155. Yoshikawa M, Shimada H, Yagi N, Murakami N, Shimoda H, Yamahara J, Matsuda H (1996) Development of bioactive functions in Hydrangeae Dulcis Folium. VI. Syntheses of thunberginols A and F and their 3′-deoxy-derivatives using regiospecific lactonization of stilbene carboxylic acid: structures and inhibitory activity on histamine release of hydramacraphyllols A and B. Chem Pharm Bull 44:1890

    Article  CAS  Google Scholar 

  156. Yoshikawa M, Harada E, Naitoh Y, Inoue K, Matsuda H, Shimoda H, Yamahara J, Murakami N (1994) Development of bioactive functions in Hydrangeae Dulcis Folium. III. On the antiallergic and antimicrobial principles of Hydrangeae Dulcis Folium. (1). Thunberginols A, B, and F. Chem Pharm Bull 42:2225

    Article  CAS  Google Scholar 

  157. Yoshikawa M, Harada E, Yagi N, Okuno Y, Muraoka O, Aoyama H, Murakami N (1994) Chemical transformation from dihydroisocoumarin into benzylidenephthalide by use of regiospecific oxidative lactonization mediated by copper chloride(II). Syntheses of thunberginol F and hydramacrophyllols A and B. Chem Pharm Bull 42:721

    Article  CAS  Google Scholar 

  158. Shode FO, Mahomed AS, Rogers CB (2002) Typhaphthalide and typharin, two phenolic compounds from Typha capensis. Phytochemistry 61:955

    Article  PubMed  CAS  Google Scholar 

  159. Alsberg CL, Black OF (1913) Contributions to the study of maize deterioration. Biochemical and toxicological investigations of Penicillium puberulum and Penicillium stoloniferum. U S Dep Agric Bur Plant Ind 270:7

    Google Scholar 

  160. Clutterbuck PW, Raistrick H (1933) Studies in the biochemistry of micro-organisms. XXXI. The molecular constitution of the metabolic products of Penicillium brevi-compactum Dierckx and related species. II. Mycophenolic acid. Biochem J 27:654

    Article  PubMed Central  CAS  Google Scholar 

  161. Birkinshaw JH, Bracken A, Morgan EN, Raistrick H (1948) Studies in the biochemistry of micro-organisms. 78. The molecular constitution of mycophenolic acid, a metabolic product of Penicillium brevi-compactum Dierckx. Part 2. Possible structural formulae for mycophenolic acid. Biochem J 43:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Birkinshaw JH, Raistrick H, Ross DJ (1952) Studies in the biochemistry of micro-organisms. 86. The molecular constitution of mycophenolic acid, a metabolic product of Penicillium brevi-compactum Dierckx. Part 3. Further observations on the structural formula for mycophenolic acid. Biochem J 50:630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Clutterbuck WP, Oxford AE, Raistrick H, Smith G (1932) Studies in the biochemistry of micro-organisms. XXIV: The metabolic products of Penicillium brevi-compactum series. Biochem J 26:1441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Nakajima S, Nozawa K (1979) Isolation in high yield of citrinin from Penicillium odoratum and of mycophenolic acid from Penicillium brunneo-stoloniferum. J Nat Prod 42:423

    Article  CAS  Google Scholar 

  165. Anderson HA, Bracewell JM, Fraser AR, Jones D, Robertson GW, Russell JD (1988) 5-Hydroxymaltol and mycophenolic acid, secondary metabolites from Penicillium echinulatum. Trans Br Mycol Soc 91:649

    Article  CAS  Google Scholar 

  166. Sumarah MW, Miller JD, Blackwell BA (2005) Isolation and metabolite production by Penicillium roqueforti, P. paneum and P. crustosum isolated in Canada. Mycopathologia 159:571

    Article  PubMed  CAS  Google Scholar 

  167. Torrenegra RD, Baquero JE, Calderón JS (2005) Actividad antimicrobiana y asignación completa de RMN 1H y 13C del ácido micofenólico aislado de Penicillium verrucosum. Rev Latinoam Quím 33:76

    CAS  Google Scholar 

  168. Erbert C, Lopes AA, Yokoya NS, Furtado NAJC, Conti R, Pupo MT, Lopes JLC, Debonsi HM (2012) Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar 55:435

    Article  CAS  Google Scholar 

  169. Rovirosa J, Diaz-Marrero A, Darias J, Painemal K, San Martin A (2006) Secondary metabolites from marine Penicillium brevicompactum. J Chil Chem Soc 51:775

    Article  CAS  Google Scholar 

  170. Valente AMMP, Ferreira AG, Daolio C, Filho ER, Boffo EF, Souza AQL, Sebastianes FLS, Melo IS (2013) Production of 5-hydroxy-7-methoxy-4-methylphthalide in a culture of Penicillium crustosum. An Acad Bras Cienc 85:487

    Article  PubMed  CAS  Google Scholar 

  171. Habib E, León F, Bauer JD, Hill RA, Carvalho P, Cutler HG, Cutler SJ (2008) Mycophenolic derivatives from Eupenicillium parvum. J Nat Prod 71:1915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chen Z, Zheng Z, Huang H, Song Y, Zhang X, Ma J, Wang B, Zhang C, Ju J (2012) Penicacids A-C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg Med Chem Lett 22:3332

    Article  CAS  Google Scholar 

  173. Colombo L, Gennari C, Potenza D, Scolastico C, Aragozzini F (1979) (E,E)-10-(1,3-Dihydro-4,6-dihydroxy-7-methyl-3-oxoisobenzofuran-5-yl)-4,8-dimethyldeca-4,8-dienoic acid: total synthesis and role in mycophenolic acid biosynthesis. J Chem Soc Chem Commun:1021

    Google Scholar 

  174. Lu X, Zheng Z, Zhang H, Huo C, Dong Y, Ma Y, Ren X, Ke A, He J, Gu Y, Shi Q (2009) Two new members of mycophenolic acid family from Penicillium brevicompactum Dierckx. J Antibiot 62:527

    Article  CAS  Google Scholar 

  175. Birkinshaw JH, Raistrik H, Ross DJ, Stickings CE (1952) Studies in the biochemistry of micro-organisms. 85. Cyclopolic and cyclopaldic acids, metabolic products of Penicillium cyclopium Westling. Biochem J 50:610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Brillinger GU, Heberle W, Weber B, Achenbach H (1978) Metabolic products of microorganisms 167. Cyclopaldic acid from Aspergillus duricaulis. 1. Production, isolation and biological properties. Arch Microbiol 116:245

    Article  PubMed  CAS  Google Scholar 

  177. Evidente A, Motta A, Sparapano L (1993) Seiricardines B and C, phytotoxic sesquiterpenes from three species of Seiridium pathogenic for cypress. Phytochemistry 33:69

    Article  CAS  Google Scholar 

  178. Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837

    Article  CAS  Google Scholar 

  179. Shimada A, Nakaya K, Takeuchi S, Kimura Y (2001) Deoxycyclopaldic acid and cyclopaldic acid, plant regulators, produced by Penicillium sp. Z Naturforsch B 449

    Google Scholar 

  180. Sommart U, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Sakayaroj J (2012) Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68:10005

    Article  CAS  Google Scholar 

  181. Achenbach H, Mühlenfeld A, Weber B, Brillinger GU (1982) Highly substituted chromanols from cultures of Aspergillus duricaulis. Tetrahedron Lett 23:4659

    Article  CAS  Google Scholar 

  182. Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556

    Article  PubMed  CAS  Google Scholar 

  183. Brian PW, Curtis PJ, Grove JF, Hemming HG, McGowan JC (1946) Gladiolic acid: an antifungal and antibacterial metabolic product of Penicillium gladioli McCull. and Thom. Nature 157:697

    Article  PubMed  CAS  Google Scholar 

  184. Grove JF (1952) Gladiolic acid, a metabolic product of Penicillium gladioli. I. Structure. Biochem J 50:648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Grove JF (1953) Gladiolic acid, a metabolic product of Penicillium gladioli. 2. Structure and fungistatic activity. Biochem J 54:664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Raistrick H, Ross DJ (1952) Studies in the biochemistry of micro-organisms. 87. Dihydrogladiolic acid, a metabolic product of Penicillium gladioli Machacek. Biochem J 50:635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Duncanson LA, Grove JF, Zealley J (1953) Gladiolic acid. Part III. The structures of norisogladiolic acid, dihydrogladiolic acid, and cyclopolic acid. J Chem Soc:3637

    Google Scholar 

  188. Brown JJ, Newbold GT (1953) Phthalaldehydes and related compounds. Part III. Synthesis of deoxygladiolic acid and experiments relating to structure of dihydrogladiolic acid. J Chem Soc:3648

    Google Scholar 

  189. Starratt AN (1970) Structure of an artifact formed during isolation of Penicillium gladioli metabolites. Can J Chem 48:2940

    Article  CAS  Google Scholar 

  190. Li Y-Y, Wang M-Z, Huang Y-J, Shen Y-M (2010) Secondary metabolites from Phomopsis sp. A123. Mycology 1:254

    Article  CAS  Google Scholar 

  191. Kameda K, Namiki M (1974) A new phthalide from a fungus, Alternaria kikuchiana. Chem Lett 1491

    Google Scholar 

  192. Höller U, Gloer JB, Wicklow DT (2002) Biologically active polyketide metabolites from an undetermined fungicolous hyphomycete resembling Cladosporium. J Nat Prod 65:876

    Article  PubMed  CAS  Google Scholar 

  193. Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730

    Article  PubMed  CAS  Google Scholar 

  194. Cui C-B, Ubukata M, Kakeya H, Onose R, Okada G, Takahashi I, Isono K, Osada H (1996) Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J Antibiot 49:216

    Article  CAS  Google Scholar 

  195. Schneider G, Anke H, Sterner O (1997) New secondary metabolites from a mycophilic Hansfordia species. Nat Prod Lett 10:133

    Article  CAS  Google Scholar 

  196. Dekker KA, Inagaki T, Gootz TD, Kaneda K, Nomura E, Sakakibara T, Sakemi S, Sugie Y, Yamauchi Y, Yoshikawa N, Kojima N (1997) CJ-12,954 and tts congeners, new anti-Helicobacter pylori compounds produced by Phanerochaete velutina: fermentation, isolation, structural elucidation and biological activities. J Antibiot 50:833

    Article  CAS  Google Scholar 

  197. Makino M, Endoh T, Ogawa Y, Watanabe K, Fujimoto Y (1998) Studies on the metabolites of Penicillium vulpinum. Heterocycles 48:1931

    Article  CAS  Google Scholar 

  198. Afiyatullov SS, Leshchenko EV, Sobolevskaya MP, Gerasimenko AV, Khudyakova YV, Kirichuk NN, Mikhailov VV (2015) New 3-[2′(R)-hydroxybutyl]-7-hydroxyphthalide from marine isolate of the fungus Penicillium claviforme. Chem Nat Compd 51:111

    Article  CAS  Google Scholar 

  199. Fujita M, Yamada M, Nakajima S, Kawai K, Nagai M (1984) O-Methylation effect on the carbon-13 nuclear magnetic resonance signals of ortho-disubstituted phenols and its application to structure determination of new phthalides from Aspergillus silvaticus. Chem Pharm Bull 32:2622

    Article  CAS  Google Scholar 

  200. Arnone A, Assante G, Nasini G, De Pava OV (1990) Spirolaxine and sporotricale: two long-chain phthalides produced by Sporotrichum laxum. Phytochemistry 29:613

    Article  CAS  Google Scholar 

  201. Tsantrizos Y, Ogilvie K, Watson A (1992) Phytotoxic metabolites of Phomopsis convolvulus, a host-specific pathogen of field bindweed. Can J Chem 70:2276

    Article  CAS  Google Scholar 

  202. Zou J, Li J, Wu Z-Y, Zhao Q, Wang G-Q, Zhao H, Chen G-D, Sun X, Guo L-D, Gao H (2015) New α-pyrone and phthalide from the Xylariaceae fungus. J Asian Nat Prod Res 17:705

    Article  PubMed  CAS  Google Scholar 

  203. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179

    Article  PubMed  CAS  Google Scholar 

  204. Arnone A, Assante G, Nasini G, Strada S, Vercesi A (2002) Cryphonectric acid and other minor metabolites from a hypovirulent strain of Cryphonectria parasitica. J Nat Prod 65:48

    Article  PubMed  CAS  Google Scholar 

  205. Abdel-Lateff A, Fisch KM, Wright AD, König GM (2003) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69:831

    Article  PubMed  CAS  Google Scholar 

  206. Huang XZ, Zhu Y, Guan XL, Tian K, Guo JM, Wang H Bin, Fu GM (2012) A novel antioxidant isobenzofuranone derivative from fungus Cephalosporium sp. AL031. Molecules 17:4219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Brady SF, Wagenaar MM, Singh MP, Janso JE, Clardy J (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2:4043

    Article  PubMed  CAS  Google Scholar 

  208. Mullady EL, Millett WP, Yoo HD, Weiskopf AS, Chen J, DiTullio D, Knight-Connoni V, Hughes DE, Pierceall WE (2004) A phthalide with in vitro growth inhibitory activity from an Oidiodendron strain. J Nat Prod 67:2086

    Article  PubMed  CAS  Google Scholar 

  209. Suemitsu R, Ohnishi K, Morikawa Y, Nagatomo S (1995) Zinnimidine and 5-(3′,3′-dimethylallyloxy)-7-methoxy-6-methylphthalide from Alternaria porri. Phytochemistry 38:495

    Article  CAS  Google Scholar 

  210. Phuwapraisirisan P, Rangsan J, Siripong P, Tip-Pyang S (2009) New antitumour fungal metabolites from Alternaria porri. Nat Prod Res 23:1063

    Article  PubMed  CAS  Google Scholar 

  211. Yang X-L, Zhang S, Hu Q-B, Luo D-Q, Zhang Y (2011) Phthalide derivatives with antifungal activities against the plant pathogens isolated from the liquid culture of Pestalotiopsis photiniae. J Antibiot 64:723

    Article  CAS  Google Scholar 

  212. Chen C, Yang RL (2013) A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells. Braz J Med Biol Res 46:643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Takahashi K, Koshino H, Narita Y, Yoshihara T (2005) Novel antifungal compounds produced by sterile dark, an unidentified wheat rhizosphere fungus. Biosci Biotechnol Biochem 69:1018

    Article  PubMed  CAS  Google Scholar 

  214. Almeida C, Kehraus S, Prudêncio M, König GM (2011) Marilones A-C, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 7:1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Yoganathan K, Rossant C, Ng S, Huang Y, Butler MS, Buss AD (2003) 10-Methoxydihydrofuscin, fuscinarin, and fuscin, novel antagonists of the human CCR5 receptor from Oidiodendron griseum. J Nat Prod 66:1116

    Article  PubMed  CAS  Google Scholar 

  216. Matsumoto K, Nagashima K, Kamigauchi T, Kawamura Y, Yasuda Y, Ishii K, Uotani N, Sato T, Nakai H, Terui Y, Kikuchi J, Ikenisi Y, Yoshida T, Kato T, Itazaki H (1995) Salfredins, new aldose reductase inhibitors produced by Crucibulum sp. RF-3817 I. Fermentation, isolation and structures of salfredins. J Antibiot 48:439

    Article  PubMed  CAS  Google Scholar 

  217. Prachyawarakorn V, Mahidol C, Sureram S, Sangpetsiripan S, Wiyakrutta S, Ruchirawat S, Kittakoop P (2008) Diketopiperazines and phthalides from a marine derived fungus of the order Pleosporales. Planta Med 74:69

    Article  PubMed  CAS  Google Scholar 

  218. Ding G, Liu S, Guo L, Zhou Y, Che Y (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71:615

    Article  PubMed  CAS  Google Scholar 

  219. Yoshikawa K, Kokudo N, Hashimoto T, Yamamoto K, Inose T, Kimura T (2010) Novel phthalide compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anti-cancer related activity. Biol Pharm Bull 33:1355

    Article  PubMed  CAS  Google Scholar 

  220. Rana NM, Sargent MV, Elix JA (1975) Structure of the lichen depsidone variolaric acid. J Chem Soc Perkin Trans 1:1992

    Article  Google Scholar 

  221. Xing J-G, Deng H-Y, Luo D-Q (2011) Two new compounds from an endophytic fungus Pestalotiopsis heterocornis. J Asian Nat Prod Res 13:1069

    Article  PubMed  CAS  Google Scholar 

  222. Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2011) Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J Nat Prod 74:79

    Article  PubMed  CAS  Google Scholar 

  223. Rukachaisirikul V, Rodglin A, Sukpondma Y, Phongpaichit S, Buatong J, Sakayaroj J (2012) Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove Rhizophora apiculata. J Nat Prod 75:853

    Article  PubMed  CAS  Google Scholar 

  224. Arunpanichlert J, Rukachaisirikul V, Tadpetch K, Phongpaichit S, Hutadilok-Towatana N, Supaphon O, Sakayaroj J (2012) A dimeric chromanone and a phthalide: metabolites from the seagrass-derived fungus Bipolaris sp. PSU-ES64. Phytochem Lett 5:604

    Article  CAS  Google Scholar 

  225. Bava A, Dallavalle S, Fronza G, Nasini G, Vajna de Pava O (2006) Absolute configuration of sporotricale and structure of 6-hydroxysporotricale. J Nat Prod 69:1793

    Article  PubMed  CAS  Google Scholar 

  226. Wang S, Zhang S, Zhou T, Zhan J (2013) Three new resorcylic acid derivatives from Sporotrichum laxum. Bioorg Med Chem Lett 23:5806

    Article  PubMed  CAS  Google Scholar 

  227. Lan W-J, Liu W, Liang W-L, Xu Z, Le X, Xu J, Lam C-K, Yang D-P, Li H-J, Wang L-Y (2014) Pseudaboydins A and B: novel isobenzofuranone derivatives from marine fungus Pseudallescheria boydii associated with starfish Acanthaster planci. Mar Drugs 12:4188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Yang J, Huang R, Qiu SX, She Z, Lin Y (2013) A new isobenzofuranone from the mangrove endophytic fungus Penicillium sp. (ZH58). Nat Prod Res 27:1902

    Article  PubMed  CAS  Google Scholar 

  229. Wang J, Wang G, Zhang Y, Zheng B, Zhang C, Wang L (2014) Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol 30:2639

    Article  PubMed  CAS  Google Scholar 

  230. Liu J, Li F, La Kim E, Li JL, Hong J, Bae KS, Chung HY, Kim HS, Jung JH (2011) Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii. J Nat Prod 74:1826

    Article  PubMed  CAS  Google Scholar 

  231. Grove JF (1972) New metabolic products of Aspergillus flavus. Part II. Asperflavin, anhydroasperflavin, and 5,7-dihydroxy-4-methylphthalide. J Chem Soc Perkin Trans 1:2406

    Google Scholar 

  232. Gunawan S, Steffan B, Steglich W (1990) Xylaral, ein Hydroxyphthalid-Derivat aus Fruchtkörpern von Xylaria polymorpha (Ascomycetes). Liebigs Ann Chem:825

    Article  Google Scholar 

  233. Nozawa K, Udagawa S, Nakahima S, Kawai K (1989) A dioxopiperazine derivative from Penicillium megasporum. Phytochemistry 28:929

    Article  CAS  Google Scholar 

  234. Wang R-Y, Fang M-J, Huang Y-J, Zheng Z-H, Shen Y-M (2006) 7-Hydroxy-4,6-dimethyl-3H-isobenzofuran-1-one. Acta Chrystallogr E E62:O4172

    Article  CAS  Google Scholar 

  235. Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146

    Article  PubMed  CAS  Google Scholar 

  236. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53

    Article  PubMed  CAS  Google Scholar 

  237. Lang G, Cole ALJ, Blunt JW, Robinson WT, Munro MHG (2007) Excelsione, a depsidone from an endophytic fungus isolated from the New Zealand endemic tree Knightia excelsa. J Nat Prod 70:310

    Article  PubMed  CAS  Google Scholar 

  238. Meister J, Weber D, Martino V, Sterner O, Anke T (2007) Phomopsidone, a novel depsidone from an endophyte of the medicinal plant Eupatorium arnottianum. Z Naturforsch C 62:11

    Article  PubMed  CAS  Google Scholar 

  239. Fuska J, Fusková A, Nemec P (1979) Vermistatin, an antibiotic with cytotoxic effects, produced from Penicillium vermiculatum. Biologia 34:735

    CAS  Google Scholar 

  240. Proksa B, Liptaj T, Prónayová N, Fuska J (1994) (−)-Mitorubrinic acid, a new metabolite of Penicillium vermiculatum Dang. F-852. Chem Pap 48:429

    Google Scholar 

  241. Fuska J, Uhrin D, Proksa B, Voticky Z, Ruppeldt J (1986) The structure of vermistatin, a new metabolite from Penicillium vermiculatum. J Antibiot 39:1605

    Article  CAS  Google Scholar 

  242. Murtaza N, Husain SA, Sarfaraz TB, Sultana N, Faizi S (1997) Isolation and identification of vermistatin, ergosterol, stearic acid and mannitol, metabolic products of Penicillium verruculosum. Planta Med 63:191

    Article  PubMed  CAS  Google Scholar 

  243. Arai M, Tomoda H, Okuda T, Wang H, Tabata N, Masuma R, Yamaguchi Y, Omura S (2002) Funicone-related compounds, potentiators of antifungal miconazole activity, produced by Talaromyces flavus FKI-0076. J Antibiot 55:172

    Article  CAS  Google Scholar 

  244. Komai S, Hosoe T, Itabashi T, Nozawa K, Okada K, de Galba Maria CT, Chikamori M, Yaguchi T, Fukushima K, Miyaji M, Kawai K (2004) A new funicone derivative isolated from Talaromyces flavus IFM52668. Mycotoxins 54:15

    Article  CAS  Google Scholar 

  245. Upadhyay RK, Strobel GA, Coval SJ, Clardy J (1990) Fijiensin, the first phytotoxin from Mycosphaerella fijiensis, the causative agent of black sigatoka disease. Experientia 46:982

    Article  CAS  Google Scholar 

  246. Komai S, Hosoe T, Itabashi T, Nozawa K, Yaguchi T, Fukushima K, Kawai K (2005) New vermistatin derivatives isolated from Penicillium simplicissimum. Heterocycles 65:2771

    Article  CAS  Google Scholar 

  247. Dethoup T, Manoch L, Kijjoa A, Pinto M, Gales L, Damas AM, Silva AMS, Eaton G, Herz W (2007) Merodrimanes and other constituents from Talaromyces thailandiasis. J Nat Prod 70:1200

    Article  PubMed  CAS  Google Scholar 

  248. Stierle AA, Stierle DB, Girtsman T (2012) Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 75:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Xia XK, Huang HR, She ZG, Cai JW, Lan L, Zhang JY, Fu LW, Vrijmoed LLP, Lin YC (2007) Structural and biological properties of vermistatin and two new vermistatin derivatives isolated from the marine-mangrove endophytic fungus Guignardia sp. No. 4382. Helv Chim Acta 90:1925

    Google Scholar 

  250. Liu Y, Xia G, Ma L, Ding B, Lu Y, He L, Xia X, She Z (2014) Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1. Planta Med 80:912

    Article  PubMed  CAS  Google Scholar 

  251. Xia X-K, Liu F, She Z-G, Yang L-G, Li M-F, Vrijmoed LLP, Lin Y-C (2008) 1H and 13C NMR assignments for 6-demethylvermistatin and two penicillide derivatives from the mangrove fungus Guignardia sp. (no. 4382) from the South China Sea. Magn Reson Chem 46:693

    Article  PubMed  CAS  Google Scholar 

  252. Liu W, Zhao H, Li R, Zheng H, Yu Q (2015) Polyketides and meroterpenoids from Neosartorya glabra. Helv Chim Acta 98:515

    Article  CAS  Google Scholar 

  253. Arnone A, Nasini G (1989) Secondary mould metabolites. XXV. The structures of rubellins C and D, two novel anthraquinone metabolites from Mycosphaerella rubella. Gazz Chim Ital 119:35

    CAS  Google Scholar 

  254. Puder C, Zeeck A (2000) New biologically active rubiginones from Streptomyces sp. J Antibiot 53:329

    Article  CAS  Google Scholar 

  255. Imura YK, Oshinari TY, Oshino HK, Ujioka SF, Kada KO, Himada AS (2007) Rubralactone, rubralides A, B and C, and rubramin produced by Penicillium rubrum. Biosci Biotechnol Biochem 71:1896

    Article  CAS  Google Scholar 

  256. Zhai M-M, Niu H-T, Li J, Xiao H, Shi Y-P, Di D-L, Crews P, Wu Q-X (2015) Talaromycolides A–C, novel phenyl-substituted phthalides isolated from the green Chinese onion-derived fungus Talaromyces pinophilus AF-02. J Agric Food Chem 63:9558

    Article  PubMed  CAS  Google Scholar 

  257. Ge HM, Shen Y, Zhu CH, Tan SH, Ding H, Song YC, Tan RX (2008) Penicidones A-C, three cytotoxic alkaloidal metabolites of an endophytic Penicillium sp. Phytochemistry 69:571

    Article  PubMed  CAS  Google Scholar 

  258. Chinworrungsee M, Kittakoop P, Isaka M, Chanphen R, Tanticharoen M, Thebtaranonth Y (2002) Halorosellins A and B, unique isocoumarin glucosides from the marine fungus Halorosellinia oceanica. J Chem Soc Perkin Trans 1:2473

    Article  CAS  Google Scholar 

  259. Tayone WC, Honma M, Kanamaru S, Noguchi S, Tanaka K, Nehira T, Hashimoto M (2011) Stereochemical investigations of isochromenones and isobenzofuranones isolated from Leptosphaeria sp. KTC 727. J Nat Prod 74:425

    Article  PubMed  CAS  Google Scholar 

  260. El-Elimat T, Raja HA, Figueroa M, Falkinham III JO, Oberlies NH (2014) Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. Phytochemistry 104:114

    Article  PubMed  CAS  Google Scholar 

  261. Kawahara N, Nakajima S, Satoh Y, Yamakazi M, Kawai K-I (1988) Studies on fungal products XVIII. Isolation and structures of a new fungal depsidone related to nidulin and new phthalide from Emericella unguis. Chem Pharm Bull 36:1970

    Article  CAS  Google Scholar 

  262. Liberra K, Jansen R, Lindequist U (1998) Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie 53:578

    PubMed  CAS  Google Scholar 

  263. Takenaka Y, Morimoto N, Hamada N, Tanahashi T (2011) Phenolic compounds from the cultured mycobionts of Graphis proserpens. Phytochemistry 72:1431

    Article  PubMed  CAS  Google Scholar 

  264. Asakawa Y, Takikawa K, Toyota M, Takemoto T (1982) Novel bibenzyl derivatives and ent-cuparene-type sesquiterpenoids from Radula species. Phytochemistry 21:2481

    Article  CAS  Google Scholar 

  265. Asakawa Y, Takikawa K, Tori M, Campbell EO (1986) Isotachin C and balantiolide, two aromatic compounds from the New Zealand liverwort Ballantiopsis rosea. Phytochemistry 25:2543

    Article  CAS  Google Scholar 

  266. Asakawa Y, Takikawa K, Tori M (1987) Bibenzyl derivatives from the Australian liverwort Frullania falciloba. Phytochemistry 26:1023

    Article  CAS  Google Scholar 

  267. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of Bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 95. Springer, Vienna, 796 p

    Google Scholar 

  268. Kraut L, Mues R, Simsim M (1994) Sesquiterpene lactones and 3-benzylphthalides from Frullania muscicola. Phytochemistry 37:1337

    Article  CAS  Google Scholar 

  269. Rycroft DS, Cole WJ, Aslam N, Lamont YM, Gabriel R (1999) Killarniensolide, methyl orsellinates and 9,10-dihydrophenanthrenes from the liverwort Plagiochila killarniensis from Scotland and the Azores. Phytochemistry 50:1167

    Article  CAS  Google Scholar 

  270. Heinrichs J, Anton H, Gradstein SR, Mues R, Heirichs J, Anton H, Gradstein SR, Mues R (2000) Systematics of Plagiochila sect. Glaucescentes Carl (Hepaticae) from tropical America: a morphological and chemotaxonomical approach. Plant Syst Evol 220:115

    Article  CAS  Google Scholar 

  271. Nagashima F, Toyota M, Asakawa Y (2006) Bazzanane sesquiterpenoids from the New Zealand liverwort Frullania falciloba. Chem Pharm Bull 54:1347

    Article  CAS  Google Scholar 

  272. Mitsuhashi H, Nomura M (1966) Studies on the constituents of Umbelliferae plants. XII. Biogenesis of 3-butylphthalide. Chem Pharm Bull 14:777

    Article  CAS  Google Scholar 

  273. Kim MR, El-Aty AMA, Kim IS, Shim JH (2006) Determination of volatile flavor components in Danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic-mass spectrometric analysis. J Chromatogr A 1116:259

    Article  PubMed  CAS  Google Scholar 

  274. Kim MR, El-Aty AMA, Choi J-H, Lee KB, Shim JH (2006) Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectroscopy. Biomed Chromatogr 20:1267

    Article  PubMed  CAS  Google Scholar 

  275. Dong L, Deng C, Wang B, Shen X (2007) Fast determination of Z-ligustilide in plasma by gas chromatography/mass spectrometry following headspace single-drop microextraction. J Sep Sci 30:1318

    Article  PubMed  CAS  Google Scholar 

  276. León A, Toscano RA, Tortoriello J, Delgado G (2011) Phthalides and other constituents from Ligusticum porteri: sedative and spasmolytic activities of some natural products and derivatives. Nat Prod Res 25:1234

    Article  PubMed  CAS  Google Scholar 

  277. Su S, Cui W, Zhou W, Duan J, Shang E, Tang Y (2013) Chemical fingerprinting and quantitative constituent analysis of siwu decoction categorized formulae by UPLC-QTOF/MS/MS and HPLC-DAD. Chin Med 8:1

    Article  CAS  Google Scholar 

  278. Song ZH, Ji ZN, Lo CK, Dong TTX, Zhao KJ, Ll OTW, Haines CJ, Kung SD, Tsim KWK (2004) Chemical and biological assessment of a traditional Chinese herbal decoction prepared from Radix Astragali and Radix Angelica sinensis: orthogonal array design to optimize the extraction of chemical constituents. Planta Med 70:1222

    Article  PubMed  CAS  Google Scholar 

  279. Yang X, Wu X, Guo H (2012) Effect of different solvents on extraction of effective components from Ligusticum chuanxiong. China J Chin Mater Medica 37:1942

    CAS  Google Scholar 

  280. Yi T, Leung KS-Y, Lu G-H, Chan K, Zhang H (2006) Simultaneous qualitative and quantitative analyses of the major constituents in the rhizome of Ligusticum chuanxiong using HPLC-DAD-MS. Chem Pharm Bull 54:255

    Article  CAS  Google Scholar 

  281. Tang Y, Zhu M, Yu S, Hua Y, Duan JA, Su S, Zhang X, Lu Y, Ding A (2010) Identification and comparative quantification of bio-active phthalides in essential oils from Si-Wu-Tang, Fo-Shou-San, Radix Angelica and Rhizoma Chuanxiong. Molecules 15:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Dauksas E, Venskutonis PR, Sivik B (1999) Supercritical CO2 extraction of the main constituents of lovage (Levisticum officinale Koch.) essential oil in model systems and overground botanical parts of the plant. J Supercrit Fluids 15:51

    Article  Google Scholar 

  283. Dauksas E, Venskutonis PR, Sivik B, Nillson T (2002) Effect of fast CO2 pressure changes on the yield of lovage (Levisticum officinale Koch.) and celery (Apium graveolens L.) extracts. J Supercrit Fluids 22:201

    Article  Google Scholar 

  284. Teng J, Chen H, Li D, Luo A (2006) Identification and characterization of supercritical fluid extracts of Rhizoma Chuanxiong by high performance liquid chromatography ion trap mass spectrometry. Front Chem China 4:454

    Article  Google Scholar 

  285. Zhang C, Qi M, Shao Q, Zhou S, Fu R (2007) Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. J Pharm Biomed Anal 44:464

    Article  PubMed  CAS  Google Scholar 

  286. Yansheng C, Zhida Z, Changping L, Qingshan L, Peifang Y, Welz-Biermann U (2011) Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using protic ionic liquids. Green Chem 13:666

    Article  CAS  Google Scholar 

  287. Dong ZB, Li SP, Hong M, Zhu Q (2005) Hypothesis of potential active components in Angelica sinensis by using biomembrane extraction and high performance liquid chromatography. J Pharm Biomed Anal 38:664

    Article  PubMed  CAS  Google Scholar 

  288. Lao SC, Li SP, Kan KKW, Li P, Wan JB, Wang YT, Dong TTX, Tsim KWK (2004) Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Anal Chim Acta 526:131

    Article  CAS  Google Scholar 

  289. Li P, Li SP, Lao SC, Fu CM, Kan KKW, Wang YT (2006) Optimization of pressurized liquid extraction for Z-ligustilide, Z-butylidenephthalide and ferulic acid in Angelica sinensis. J Pharm Biomed Anal 40:1073

    Article  PubMed  CAS  Google Scholar 

  290. Xie J-J, Lu J, Qian Z-M, Yu Y, Duan J-A, Li S-P (2009) Optimization and comparison of five methods for extraction of coniferyl ferulate from Angelica sinensis. Molecules 14:555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Liu J-L, Zheng S-L, Fan Q-J, Yuan J-C, Yang S-M, Kong F-L (2014) Optimization of high-pressure ultrasonic-assisted simultaneous extraction of six major constituents from Ligusticum chuanxiong rhizome using response surface methodology. Molecules 19:1887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Zhang Y, Liu C, Qi Y, Li Y, Li S (2015) Development of circulating ultrasonic-assisted online extraction coupled to countercurrent chromatography and centrifugal partition chromatography for simultaneous extraction and isolation of phytochemicals: application to Ligusticum chuanxiong Hort. Ind Eng Chem Res 54:3009

    Article  CAS  Google Scholar 

  293. Mitsuhashi H, Nagai U, Muramatsu T, Tashiro H (1960) Studies on the constituents of Umbelliferae plants. II. Isolation of the active principles of Ligusticum root. Chem Pharm Bull 8:243

    Article  CAS  Google Scholar 

  294. Momin RA, Nair MG (2001) Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. J Agric Food Chem 49:142

    Article  PubMed  CAS  Google Scholar 

  295. Chou S-C, Everngam MC, Sturtz G, Beck JJ (2006) Antibacterial activity of components from Lomatium californicum. Phytother Res 20:153

    Article  PubMed  CAS  Google Scholar 

  296. Zhang DL, Teng HL, Li GS, Liu K, Su ZG (2006) Separation and purification of Z-ligustilide and senkyunolide A from Ligusticum chuanxiong Hort. with supercritical fluid extraction and high-speed counter-current chromatography. Sep Sci Technol 41:3397

    Article  CAS  Google Scholar 

  297. Wang X, Shi X, Li F, Liu J, Cheng C (2008) Application of analytical and preparative high-speed counter-current chromatography for separation of Z-ligustilide from crude extract of Angelica sinensis. Phytochem Anal 19:193

    Article  PubMed  CAS  Google Scholar 

  298. Wei Y, Huang W, Gu Y (2013) Online isolation and purification of four phthalide compounds from Chuanxiong Rhizoma using high-speed counter-current chromatography coupled with semi-preparative liquid chromatography. J Chromatogr A 1284:53

    Article  PubMed  CAS  Google Scholar 

  299. Kwon JH, Ahn YJ (2002) Acaricidal activity of butylidenephthalide identified in Cnidium officinale rhizome against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J Agric Food Chem 50:4479

    Article  PubMed  CAS  Google Scholar 

  300. León A, Chávez MI, Delgado G (2011) 1H and DOSY NMR spectroscopy analysis of Ligusticum porteri rhizome extracts. Magn Reson Chem 49:469

    Article  PubMed  CAS  Google Scholar 

  301. Lang G, Mayhudin NA, Mitova MI, Sun L, Van Der Sar S, Blunt JW, Cole ALJ, Ellis G, Laatsch H, Munro MHG (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71:1595

    Article  PubMed  CAS  Google Scholar 

  302. Zschocke S, Liu JH (1998) Comparative study of roots of Angelica sinensis and related Umbelliferous drugs by thin layer chromatography, high‐performance liquid chromatography, and liquid chromatography-mass spectrometry. Phytochem Anal 9:283

    Article  CAS  Google Scholar 

  303. Zschocke S, Klaiber I, Bauer R, Vogler B (2005) HPLC-coupled spectroscopic techniques (UV, MS, NMR) for the structure elucidation of phthalides in Ligusticum chuanxiong. Mol Divers 9:33

    Article  PubMed  CAS  Google Scholar 

  304. Beauchamp PS, Bottini AT, Dev V, Melkani AB, Timbrook J (1993) Analysis of the essential oil from Lomatium californicum (Nutt.) Math. and Const. Dev Food Sci 32:605

    Google Scholar 

  305. Lu G-H, Chan K, Liang Y-Z, Leung K, Chan C-L, Jiang Z-H, Zhao Z-Z (2005) Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related Umbelliferae herbs. J Chromatogr A 1073:383

    Article  PubMed  CAS  Google Scholar 

  306. Lu GH, Chan K, Chan CL, Leung K, Jiang ZH, Zhao ZZ (2004) Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr A 1046:101

    Article  PubMed  CAS  Google Scholar 

  307. Yang B, Chen J, Lee FS-C, Wang X (2008) GC-MS fingerprints for discrimination of Ligusticum chuanxiong from Angelica. J Sep Sci 31:3231

    Article  PubMed  CAS  Google Scholar 

  308. Yi T, Leung KS-Y, Lu G-H, Zhang H, Chan K (2005) Identification and comparative determination of senkyunolide A in traditional Chinese medicinal plants Ligusticum chuanxiong and Angelica sinensis by HPLC coupled with DAD and ESI-MS. Chem Pharm Bull 53:1480

    Article  CAS  Google Scholar 

  309. Rivero I, Juárez K, Zuluaga M (2012) Quantitative HPLC method for determining two of the major active phthalides from Ligusticum porteri roots. J AOAC Int 95:84

    Article  PubMed  CAS  Google Scholar 

  310. Li S-L, Yan R, Tam Y-K, Lin G (2007) Post-harvest alteration of the main chemical ingredients in Ligusticum chuanxiong Hort. (Rhizoma Chuanxiong). Chem. Pharm Bull 55:140

    Article  CAS  Google Scholar 

  311. Qin HL, Deng AJ, Du GH, Wang P, Zhang JL, Li ZH (2009) Fingerprinting analysis of Rhizoma Chuanxiong of commercial types using H-1 nuclear magnetic resonance spectroscopy and high performance liquid chromatography method. J Integr Plant Biol 51:537

    Article  PubMed  CAS  Google Scholar 

  312. Morris KF, Johnson CS (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 114:3139

    Article  CAS  Google Scholar 

  313. Morris KF, Johnson CS (1993) Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc 115:4291

    Article  CAS  Google Scholar 

  314. Birch AJ, English RJ, Massy-Westropp RA, Slaytor M, Smith H (1958) Studies in relation to biosynthesis. Part XIV. The origin of nuclear methyl groups in mycophenolic acid. J Chem Soc 365

    Google Scholar 

  315. Birch AJ, Wright JJ (1969) A total synthesis of mycophenolic acid. Aust J Chem 22:2635

    Article  CAS  Google Scholar 

  316. Canonica L, Kroszczynski W, Ranzi BM, Rindone B, Santaniello E, Scolastico C (1972) Biosynthesis of mycophenolic acid. J Chem Soc Perkin Trans 1:2639

    Article  Google Scholar 

  317. Bedford CT, Knitell P, Money T, Phillips GT, Salisbury P (1973) Biosynthesis of mycophenolic acid. Can J Chem 51:694

    Article  CAS  Google Scholar 

  318. Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801

    Article  PubMed  CAS  Google Scholar 

  319. Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Ogawa Y, Mori Y, Maruno M, Wakamatsu T (1997) Diels-Alder reaction of ligustilide giving levistolide A and tokinolide B. Heterocycles 45:1869

    Article  CAS  Google Scholar 

  321. Rios MY, Delgado G, Toscano RA (1998) Chemical reactivity of phthalides. Relay synthesis of diligustilide, rel-(3′R)-3′,8′-dihydrodiligustilide and wallichilide. Tetrahedron 54:3355

    Article  CAS  Google Scholar 

  322. Lager E, Sundin A, Toscano RA, Delgado G, Sterner O (2007) Diels-Alder adducts derived from the natural phthalide Z-ligustilide. Tetrahedron Lett 48:4215

    Article  CAS  Google Scholar 

  323. Rios MY, Delgado G (1999) Lewis acid catalyzed transformations of Z-ligustilide. J Mex Chem Soc 43:127

    CAS  Google Scholar 

  324. Schinkovitz A, Pro SM, Main M, Chen SN, Jaki BU, Lankin DC, Pauli GF (2008) Dynamic nature of the ligustilide complex. J Nat Prod 71:1604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Cui F, Feng L, Hu J (2006) Factors affecting stability of Z-ligustilide in the volatile oil of Radix Angelica sinensis and Ligusticum chuanxiong and its stability prediction. Drug Dev Ind Pharm 32:747

    Article  PubMed  CAS  Google Scholar 

  326. Zhan JY-X, Zhang WL, Zheng KY-Z, Zhu KY, Chen J-P, Chan P-H, Dong TT-X, Choi RC-Y, Lam H, Tsim KW-K, Lau DT-W (2013) Chemical changes of Angelica sinensis Radix and Chuanxiong Rhizoma by wine treatment: chemical profiling and marker selection by gas chromatography coupled with triple quadrupole mass spectrometry. Chin Med 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Zuo A-H, Cheng M-C, Zhuo R-J, Wang L, Xiao H-B (2013) Structure elucidation of degradation products of Z-ligustilide by UPLC-QTOF-MS and NMR spectroscopy. Acta Pharm Sin 48:911

    CAS  Google Scholar 

  328. Kobayashi M, Fujita M, Mitsuhashi H (1987) Studies on the constituents of Umbelliferae plants. XV. Constituents of Cnidium officinale: occurrence of pregnenolone, coniferyl ferulate and hydroxyphthalides. Chem Pharm Bull 35:1427

    Article  CAS  Google Scholar 

  329. Cimmino A, Andolfi A, Avolio F, Ali A, Tabanca N, Khan IA, Evidente A (2013) Cyclopaldic acid, seiridin, and sphaeropsidin A as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): structure-activity relationships. Chem Biodivers 10:1239

    Article  PubMed  CAS  Google Scholar 

  330. Nelson PH, Carr SF, Devens BH, Eugui EM, Franco F, Gonzalez C, Hawley RC, Loughhead DG, Milan DJ, Papp E, Patterson JW, Rouhafza S, Sjogren EB, Smith DB, Stephenson RA, Talamas FX, Waltos AM, Weikert RJ, Wu JC (1996) Structure-activity relationships for inhibition of inosine monophosphate dehydrogenase by nuclear variants of mycophenolic acid. J Med Chem 39:4181

    Article  PubMed  CAS  Google Scholar 

  331. Rios MY, Delgado G, Espinosa-Pérez G (1998) Base-catalyzed intramolecular condensations of diligustilide. Tetrahedron Lett 39:6605

    Article  CAS  Google Scholar 

  332. Quiroz-García B, Hernández-Ortega S, Sterner O, Delgado G (2004) Transformations of the natural dimeric phthalide diligustilide. Tetrahedron 60:3681

    Article  CAS  Google Scholar 

  333. Quiroz-García B, Hernández L, Toscano RA, Sterner O, Delgado G (2003) Base-catalyzed intramolecular condensation of tokinolide B. Tetrahedron Lett 44:2509

    Article  CAS  Google Scholar 

  334. León A, Cogordán JA, Sterner O, Delgado G (2012) Enantiomeric derivatives of tokinolide B: absolute configuration and biological properties. J Nat Prod 75:859

    Article  PubMed  CAS  Google Scholar 

  335. León A, Delgado G (2012) Diligustilide: enantiomeric derivatives, absolute configuration and cytotoxic properties. J Mex Chem Soc 56:222

    Google Scholar 

  336. Kitayama T (1997) Microbial asymmetric syntheses of 3-alkylphthalide derivatives. Tetrahedron Asymmetry 8:3765

    Article  CAS  Google Scholar 

  337. He L, Sun J, Xu Y, Sun Z, Zheng C (2008) Novozyme 435-catalyzed efficient acylation of 3-n-butylphthalide in organic medium. Prep Biochem Biotechnol 38:376

    Article  PubMed  CAS  Google Scholar 

  338. He L, Sun J, Xu Y, Sun ZH (2008) A novel method to resolve (R,S)-3-n-butylphthalide catalyzed by Novozyme 435 in microaqueous medium. Process Biochem 43:1215

    Article  CAS  Google Scholar 

  339. He L, Li C, Gao B (2009) Novozyme 435-catalyzed asymmetric acylation of (R,S)-3-n-butylphthalide in hexane. Prep Biochem Biotechnol 39:266

    Article  PubMed  CAS  Google Scholar 

  340. Li C, He L, Qiu B, Gao B (2010) An efficient system for the asymmetric acylation of (R,S)-3-n-butylphthalide catalyzed by Novozyme 435. Prep Biochem Biotechnol 40:354

    Article  PubMed  CAS  Google Scholar 

  341. Jekkel A, Barta I, Kónya A, Süto J, Boros S, Horváth G, Ambrus G (2001) Microbiological transformation of mycophenolic acid. J Mol Catal B Enzym 11:423

    Article  CAS  Google Scholar 

  342. Jekkel A, Barta I, Boros S, Suto J, Horváth G, Szabó Z, Ambrus G (2002) Microbial transformation of mycophenolic acid. Part II. J Mol Catal B Enzym 19–20:209

    Article  CAS  Google Scholar 

  343. Jones DF, Moore RH, Crawley GC (1970) Microbial modification of mycophenolic acid. J Chem Soc C 1725

    Google Scholar 

  344. Herath WHMW, Ferreira D, Khan IA (2003) Microbial transformation of the phthalideisoquinoline alkaloid, beta-hydrastine. Nat Prod Res 17:269

    Article  PubMed  CAS  Google Scholar 

  345. Nasini G, Bava A, Fronza G, Giannini G (2007) Microbial transformation of spirolaxine, a bioactive undecaketide fungal metabolite from the Basidiomycete Sporotrichum laxum. Chem Biodivers 4:2772

    Article  PubMed  CAS  Google Scholar 

  346. Bava A, Nasini G, Fronza G (2012) Biotransformation of spirolaxine by Absidia cuneospora and Trametes hirsuta: formation of β-glycosyl and β-xylosyl derivatives. J Mol Catal B Enzym 82:59

    Article  CAS  Google Scholar 

  347. Mali RS, Babu KN (1998) Naturally occurring prenylated phthalides: first total synthesis of salfredin B11. J Chem Res 292

    Google Scholar 

  348. Alder K, Rickert HF (1936) Zur Kenntnis der Dien-synthese. I. Über eine Methode der Direkten Unterscheidung Cyclischer Penta- und Hexa-diene. Justus Liebigs Ann Chem 524:180

    Article  CAS  Google Scholar 

  349. Patterson JW (1993) The synthesis of mycophenolic acid. Tetrahedron 49:4789

    Article  CAS  Google Scholar 

  350. Brookes PA, Cordes J, White AJP, Barrett AGM (2013) Total synthesis of mycophenolic acid by a palladium-catalyzed decarboxylative allylation and biomimetic aromatization sequence. Eur J Org Chem 32:7313–7319

    Article  CAS  Google Scholar 

  351. Hariprakasha HK, Subba Rao GSR (1998) Synthesis based on cyclohexadienes. Part 26. Total synthesis of some naturally occurring phthalides from Alternaria species. Indian J Chem B 37:851

    Google Scholar 

  352. Katoh N, Nakahata T, Kuwahara S (2008) Synthesis of novel antifungal phthalides produced by a wheat rhizosphere fungus. Tetrahedron 64:9073

    Article  CAS  Google Scholar 

  353. Mal D, Pahari P, De SR (2007) Regiospecific synthesis of 3-(2,6-dihydroxyphenyl) phthalides: application to the synthesis of isopestacin and cryphonectric acid. Tetrahedron 63:11781

    Article  CAS  Google Scholar 

  354. Ohzeki T, Mori K (2001) Synthesis of corollosporine, an antibacterial metabolite of the marine fungus Corollospora maritima. Biosci Biotechnol Biochem 65:172

    Article  PubMed  CAS  Google Scholar 

  355. Paradkar MV, Kulkarni A, Joseph AR, Ranade AA (2000) An efficient synthesis of dimethoxyphthalides. J Chem Res:364

    Article  Google Scholar 

  356. Talapatra B, Roy MK, Talapatra SK (1983) Syntheses of methyl ether of anaphatol and three other natural phthalides. J Indian Chem Soc 60:1169

    CAS  Google Scholar 

  357. Bellina F, Ciucci D, Vergamini P, Rossi R (2000) Regioselective synthesis of natural and unnatural (Z)-3-(1-alkylidene) phthalides and 3-substituted isocoumarins starting from methyl 2-hydroxybenzoates. Tetrahedron 56:2533

    Article  CAS  Google Scholar 

  358. Kanazawa C, Terada M (2007) Organic-base-catalyzed synthesis of phthalides via highly regioselective intramolecular cyclization reaction. Tetrahedron Lett 48:933

    Article  CAS  Google Scholar 

  359. Kuethe JT, Maloney KM (2013) A concise synthesis of 3,4-fused spiro[isobenzofuran-3-ones], spiro[furo[3,4-b]pyridin-5(7H)-ones], 3-aryl-, and alkylphthalides. Tetrahedron 69:5248

    Article  CAS  Google Scholar 

  360. Mondal M, Argade NP (2004) DBU-induced phenol-keto resonance in 3,5-dihydroxyphthalide: regioselectivities in condensations with α, β-unsaturated aldehydes - facile synthesis of bioactive natural and unnatural benzopyrans. Synlett 7:1243

    Google Scholar 

  361. Ogawa Y, Maruno M, Wakamatsu T (1994) Efficient synthesis of hydroxyphthalides. Heterocycles 1:47

    Google Scholar 

  362. Li S, Wang Z, Fang X, Li Y (1993) Synthesis of (Z)-ligustilide. Synth Commun 23:2909

    Article  CAS  Google Scholar 

  363. Kobayashi K, Shimizu H, Itoh M, Sugimone H (1990) An efficient synthesis of 5,7-dihydroxy-4-methylisobenzofuran-1(3H)-one, a metabolite of Aspergillus flavus and a key intermediate in the synthesis of mycophenolic acid. Bull Chem Soc Jpn 63:2435

    Article  CAS  Google Scholar 

  364. Asaoka M, Miyake K, Takei H (1977) Synthesis of 7-hydroxyphthalides starting from unsaturated lactones via 2-trialkylsiloxyfurans. Chem Lett:167

    Article  Google Scholar 

  365. Allison WR, Newbold GT (1959) Lactones. Part VI. The preparation of 5,7-dihydroxyphthalide, its methyl ether and related compounds. J Chem Soc:3335

    Google Scholar 

  366. Canonica L, Rindone B, Santaniello E, Scolastico C (1972) A total synthesis of mycophenolic acid, some analogues and some biogenetic intermediates. Tetrahedron 28:4395

    Article  CAS  Google Scholar 

  367. Mali RS, Patil SR (1990) Synthesis of 3-butylidene-7-hydroxyphthalide. Synth Commun 20:167

    Article  CAS  Google Scholar 

  368. Petrignet J, Inack Ngi S, Abarbri M, Thibonnet J (2014) Short and convenient synthesis of two natural phthalides by a copper(I) catalysed Sonogashira/oxacyclisation copper(I) process. Tetrahedron Lett 55:982

    Article  CAS  Google Scholar 

  369. Ohzeki T, Mori K (2003) Synthesis and absolute configuration of (-)-3-butyl-7-hydroxyphthalide, a cytotoxic metabolite of Penicillium vulpinum. Biosci Biotechnol Biochem 67:2240

    Article  PubMed  CAS  Google Scholar 

  370. Jimenez R, Maldonado LA, Salgado-Zamora H (2010) Synthesis of demethylated nidulol via an intramolecular Michael reaction. Nat Prod Res 24:1274

    Article  PubMed  CAS  Google Scholar 

  371. Reddy RS, Kiran INC, Sudalai A (2012) CN-assisted oxidative cyclization of cyano cinnamates and styrene derivatives: a facile entry to 3-substituted chiral phthalides. Org Biomol Chem 10:3655

    Article  PubMed  CAS  Google Scholar 

  372. Schwaben J, Cordes J, Harms K, Koert U (2011) Total syntheses of (+)-pestaphthalide A and (-)-pestaphthalide B. Synthesis 18:2929

    Google Scholar 

  373. Oguro D, Watanabe H (2011) Asymmetric synthesis and sensory evaluation of sedanenolide. Biosci Biotechnol Biochem 75:1502

    Article  PubMed  CAS  Google Scholar 

  374. Pedrosa R, Sayalero S, Vicente M (2006) A direct efficient diastereoselective synthesis of enantiopure 3-substituted-isobenzofuranones. Tetrahedron 62:10400

    Article  CAS  Google Scholar 

  375. Choi PJ, Sperry J, Brimble MA (2010) Heteroatom-directed reverse Wacker oxidations. Synthesis of the reported structure of (-)-herbaric acid. J Org Chem 75:7388

    Article  PubMed  CAS  Google Scholar 

  376. Kitahara T, Uchida K, Watanabe H, Usui T, Osada H (1998) Syntheses and bioactivities of acetophthalidin and its derivatives. Heterocycles 48:2649

    Article  Google Scholar 

  377. Lin L, He X, Lian L, King W, Elliott J (1998) Liquid chromatographic-electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J Chromatogr A 810:71

    Article  CAS  Google Scholar 

  378. Quiroz-García B, Figueroa R, Cogordan JA, Delgado G (2005) Photocyclodimers from (Z)-ligustilide. Experimental results and FMO analysis. Tetrahedron Lett 46:3003

    Article  CAS  Google Scholar 

  379. Fang L, Xiao X, Liu C, He X (2012) Recent advance in studies on Angelica sinensis. Chin Herb Med 4:12

    CAS  Google Scholar 

  380. Sowbhagya HB (2014) Chemistry, technology and nutraceutical function of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr 54:389

    Article  PubMed  CAS  Google Scholar 

  381. Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on radix Angelica sinensis. Chin J Nat Med 11:577

    Article  PubMed  CAS  Google Scholar 

  382. Yang J, Chen H, Wu J, Gong S (2012) Advances in studies on pharmacological functions of ligustilide and their mechanisms. Chin Herb Med 4:26

    CAS  Google Scholar 

  383. Chen X, Dang TT, Facchini PJ (2015) Noscapine comes of age. Phytochemistry 111:7

    Article  PubMed  CAS  Google Scholar 

  384. Neerupma D, Ankur S, Archana S (2013) Noscapine: an anti-mitotic agent. World J Pharm Pharm Sci 3:324

    Google Scholar 

  385. DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 58:5699

    Article  PubMed  CAS  Google Scholar 

  386. Tripathi M, Reddy PL, Rawat DS (2014) Noscapine and its analogues as anti-cancer agents. Chem Biol Interface 4:1

    Google Scholar 

  387. Li W, Wu Y, Liu X, Yan C, Liu D, Pan Y, Yang G, Yin F, Weng Z, Zhao D, Chen Z, Cai B (2013) Antioxidant properties of cis-(Z,Z′)-3a.7a′,7a.3a′-dihydroxy-ligustilide on human umbilical vein endothelial cells in vitro. Molecules 18:520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  388. Dietz BM, Liu D, Hagos GK, Yao P, Schinkovitz A, Pro SM, Deng S, Farnsworth NR, Pauli GF, van Breemen RB, Bolton JL (2008) Angelica sinensis and its alkylphthalides induce the detoxification enzyme NAD(P)H:quinone oxidoreductase 1 by alkylating Keap1. Chem Res Toxicol 21:1939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  389. Qi H, Siu SO, Chen Y, Han Y, Chu IK, Tong Y, Lau ASY, Rong J (2010) Senkyunolides reduce hydrogen peroxide-induced oxidative damage in human liver HepG2 cells via induction of heme oxygenase-1. Chem Biol Interact 183:380

    Article  PubMed  CAS  Google Scholar 

  390. Du J, Yu Y, Ke Y, Wang C, Zhu L, Qian ZM (2007) Ligustilide attenuates pain behavior induced by acetic acid or formalin. J Ethnopharmacol 112:211

    Article  PubMed  CAS  Google Scholar 

  391. Lin Q, Zhao AG, Chen JN, Lai XP, Gui SH, Fang CP (2011) Anti-inflammatory and analgesic effects of ligustilide. Chin J Exp Med Formulae 17:165

    Google Scholar 

  392. Juárez-Reyes K, Ángeles-López GE, Rivero-Cruz I, Bye R, Mata R (2014) Antinociceptive activity of Ligusticum porteri preparations and compounds. Pharm Biol 52:14

    Article  PubMed  Google Scholar 

  393. Brindis F, Rodríguez R, Bye R, González-Andrade M, Mata R (2011) (Z)-3-Butylidenephthalide from Ligusticum porteri, an α-glucosidase inhibitor. J Nat Prod 74:314

    Article  PubMed  CAS  Google Scholar 

  394. Xiao B, Yin J, Park M, Liu J, Li JL, La Kim E, Hong J, Chung HY, Jung JH (2012) Design and synthesis of marine fungal phthalide derivatives as PPAR-gamma agonists. Bioorg Med Chem 20:4954

    Article  PubMed  CAS  Google Scholar 

  395. Zhang L, Du J-R, Wang J, Yu D-K, Chen Y-S, He Y, Wang C-Y (2009) Z-Ligustilide extracted from Radix Angelica sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi 129:855

    Article  PubMed  CAS  Google Scholar 

  396. Teng CM, Chen WY, Ko WC, Ouyang CH (1987) Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta 924:375

    Article  PubMed  CAS  Google Scholar 

  397. Xu H, Feng Y (2001) Effects of 3-n-butylphthalide on thrombosis formation and platelet function in rats. Acta Pharm Sin 36:329

    CAS  Google Scholar 

  398. Naito T, Kubota K, Shimoda Y, Sato T, Ikeya Y, Okada M, Maruno M (1995) Effects of constituents of Chinese crude drug, Ligustici Chuanxiong Rhizoma, on vasoconstriction and blood viscosity. Nat Med 49:288

    CAS  Google Scholar 

  399. Or TCT, Yang CLH, Law AHY, Li JCB, Lau ASY (2011) Isolation and identification of anti-inflammatory constituents from Ligusticum chuanxiong and their underlying mechanisms of action on microglia. Neuropharmacology 60:823

    Article  PubMed  CAS  Google Scholar 

  400. Peng H-Y, Du J-R, Zhang G-Y, Kuang X, Liu Y-X, Qian Z-M, Wang C-Y (2007) Neuroprotective effect of (Z)-ligustilide against permanent focal ischemic damage in rats. Biol Pharm Bull 30:309

    Article  PubMed  CAS  Google Scholar 

  401. Kuang X, Yao Y, Du JR, Liu YX, Wang CY, Qian ZM (2006) Neuroprotective role of (Z)-ligustilide against forebrain ischemic injury in ICR mice. Brain Res 1102:145

    Article  PubMed  CAS  Google Scholar 

  402. Wu XM, Qian ZM, Zhu L, Du F, Yung WH, Gong Q, Ke Y (2011) Neuroprotective effect of ligustilide against ischaemia-reperfusion injury via up-regulation of erythropoietin and down-regulation of RTP801. Br J Pharmacol 164:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  403. Qi H, Han Y, Rong J (2012) Potential roles of PI3K/Akt and Nrf2-Keap1 pathways in regulating hormesis of (Z)-ligustilide in PC12 cells against oxygen and glucose deprivation. Neuropharmacology 62:1659

    Article  PubMed  CAS  Google Scholar 

  404. Peng B, Zhao P, Lu YP, Chen MM, Sun H, Wu XM, Zhu L (2013) Z-Ligustilide activates the Nrf2/HO-1 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Brain Res 1520:168

    Article  PubMed  CAS  Google Scholar 

  405. Mahmoudian M, Mehrpour M, Benaissa F, Siadatpour Z (2003) A preliminary report on the application of noscapine in the treatment of stroke. Eur J Clin Pharmacol 59:579

    Article  PubMed  CAS  Google Scholar 

  406. Chen D, Tang J, Khatibi NH, Zhu M, Li Y, Wang C, Jiang R, Tu L, Wang S (2011) Treatment with Z-ligustilide, a component of Angelica sinensis, reduces brain injury after a subarachnoid hemorrhage in rats. J Pharmacol Exp Ther 337:663

    Article  PubMed  CAS  Google Scholar 

  407. Kuang X, Du JR, Liu YX, Zhang GY, Peng HY (2008) Postischemic administration of (Z)-ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharmacol Biochem Behav 88:213

    Article  PubMed  CAS  Google Scholar 

  408. Ho CC, Kumaran A, Hwang LS (2009) Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis. Food Chem 114:246

    Article  CAS  Google Scholar 

  409. Kuang X, Du JR, Chen YS, Wang J, Wang YN (2009) Protective effect of (Z)-ligustilide against amyloid B-induced neurotoxicity is associated with decreased pro-inflammatory markers in rat brains. Pharmacol Biochem Behav 92:635

    Article  PubMed  CAS  Google Scholar 

  410. Cheng LL, Chen XN, Wang Y, Yu L, Kuang X, Wang LL, Yang W, Du JR (2011) Z-Ligustilide isolated from Radix Angelica sinensis ameliorates the memory impairment induced by scopolamine in mice. Fitoterapia 82:1128

    Article  PubMed  CAS  Google Scholar 

  411. Li J-J, Zhu Q, Lu Y-P, Zhao P, Feng Z-B, Qian Z-M, Zhu L (2015) Ligustilide prevents cognitive impairment and attenuates neurotoxicity in d-galactose induced aging mice brain. Brain Res 1595:19

    Article  PubMed  CAS  Google Scholar 

  412. Qi H, Zhao J, Han Y, Lau ASY, Rong J (2012) Z-Ligustilide potentiates the cytotoxicity of dopamine in rat dopaminergic PC12 cells. Neurotoxic Res 22:345

    Article  CAS  Google Scholar 

  413. Matsumoto K, Kohno S, Ojima K, Tezuka Y, Kadota S, Watanabe H (1998) Effects of methylene chloride-soluble fraction of Japanese Angelica root extract, ligustilide and butylidenephthalide, on pentobarbital sleep in group-housed and socially isolated mice. Life Sci 62:2073

    Article  PubMed  CAS  Google Scholar 

  414. Bjeldanes LF, Kim I-S (1978) Sedative activity of celery oil constituents. J Food Sci 43:143

    Article  CAS  Google Scholar 

  415. Straughan DW, Neal MJ, Simmonds MA, Collins GG, Hill RG (1971) Evaluation of bicuculline as a GABA antagonist. Nature 233:352

    Article  PubMed  CAS  Google Scholar 

  416. Curtis DR, Duggan AW, Felix D, Johnston GAR (1970) GABA-[aminobutyric acid], bicuculline, and central inhibition. Nature 226:1222

    Article  PubMed  CAS  Google Scholar 

  417. Huang JH, Johnston GA (1990) (+)-Hydrastine, a potent competitive antagonist at mammalian GABAA receptors. Br J Pharmacol 99:727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  418. Branco C dos S, Scola G, Rodrigues AD, Cesio V, Laprovitera M, Heinzen H, Telles MDS, Fank B, de Freitas SCV, Coitinho AS, Salvador M (2013) Anticonvulsant, neuroprotective and behavioral effects of organic and conventional yerba mate (Ilex paraguariensis St. Hil.) on pentylenetetrazol-induced seizures in Wistar rats. Brain Res Bull 92:60

    Article  CAS  Google Scholar 

  419. Sadek B, Kuder K, Subramanian D, Shafiullah M, Stark H, Lazewska D, Adem A, Kiec-Kononowicz K (2014) Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. Behav Pharmacol 25:245

    Article  PubMed  CAS  Google Scholar 

  420. Yu S, You S (1984) Anticonvulsant effect of 3-n-butylphthalide and 3-n-butyl-4,5-dihydrophthalide. Acta Pharm Sin 19:566

    CAS  Google Scholar 

  421. Yang J, Chen Y (1984) Isolation and identification of anticonvulsive constituents of Apium graveolens. Chin Pharm Bull 19:670

    CAS  Google Scholar 

  422. Yu SR, Gao NN, Li LL, Wang ZY, Chen Y, Wang WN (1988) The anticonvulsant effect of 3-butylphthalide in rats. Acta Pharm Sin 23:656

    CAS  Google Scholar 

  423. Yu S, Gao N, Li L, Wang Z, Chen Y, Wang W (1988) Facilitated performance of learning and memory in rats by 3-n-butylphthalide. Zhongguo Yaoli Xuebao 9:385

    PubMed  CAS  Google Scholar 

  424. Dong G, Feng Y (1999) Anticonvulsant effects of 3-n-butylphthalide and its optical isomers. Chin Pharmacol Bull 15:88

    CAS  Google Scholar 

  425. Lee TF, Lin YL, Huang YT (2007) Studies on antiproliferative effects of phthalides from Ligusticum chuanxiong in hepatic stellate cells. Planta Med 73:527

    Article  PubMed  CAS  Google Scholar 

  426. Aneja R, Dhiman N, Idnani J, Awasthi A, Arora SK, Chandra R, Joshi HC (2007) Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent. Cancer Chemother Pharmacol 60:831

    Article  PubMed  CAS  Google Scholar 

  427. Yang Z-R, Liu M, Peng X-L, Lei X-F, Zhang J-X, Dong W-G (2012) Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro. Biochem Biophys Res Commun 421:627

    Article  PubMed  CAS  Google Scholar 

  428. Landen JW, Lang R, McMahon SJ, Rusan NM, Yvon A, Adams AW, Sorcinelli MD, Campbell R, Bonaccorsi P, Ansel JC, Archer DR, Wadsworth P, Armstrong CA, Joshi HC (2002) Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma. Cancer Res 62:4109

    PubMed  CAS  Google Scholar 

  429. Zhou J, Panda D, Landen JW, Wilson L, Joshi HC (2002) Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J Biol Chem 277:17200

    Article  PubMed  CAS  Google Scholar 

  430. Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci USA 95:1601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  431. Momin RA, Nair MG (2002) Antioxidant, cyclooxygenase and topoisomerase inhibitory compounds from Apium graveolens Linn. seeds. Phytomedicine 9:312

    Article  PubMed  CAS  Google Scholar 

  432. Kan WLT, Cho CH, Rudd JA, Lin G (2008) Study of the anti-proliferative effects and synergy of phthalides from Angelica sinensis on colon cancer cells. J Ethnopharmacol 120:36

    Article  PubMed  CAS  Google Scholar 

  433. Tsai NM, Chen YL, Lee CC, Lin PC, Cheng YL, Chang WL, Lin SZ, Harn HJ (2006) The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem 99:1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  434. Guo H, Li Z-H, Feng T, Liu J-K (2014) One new ergostane-type steroid and three new phthalide derivatives from cultures of the basidiomycete Albatrellus confluens. J Asian Nat Prod Res 17:107

    Article  PubMed  CAS  Google Scholar 

  435. Huang F, Li SJ, Lu XH, Liu AL, Du GH, Shi GG (2011) Two glutathione S-transferase inhibitors from Radix Angelica sinensis. Phytother Res 25:284

    Article  PubMed  CAS  Google Scholar 

  436. Kobayashi S, Mimura Y, Notoya K, Kimura I, Kimura M (1992) Antiproliferative effects of the traditional Chinese medicine Shimotsu-to, its component Cnidium Rhizome and derived compounds on primary cultures of mouse aorta smooth muscle cells. Jpn J Pharmacol 60:397

    Article  PubMed  CAS  Google Scholar 

  437. Kobayashi S, Mimura Y, Naitoh T, Kimura I, Kimura M (1993) Chemical structure-activity of Cnidium Rhizoma-derived phthalides for the competence inhibition of proliferation in primary cultures of mouse aorta smooth muscle cells. Jpn J Pharmacol 63:353

    Article  PubMed  CAS  Google Scholar 

  438. Lu Q, Qiu T-Q, Yang H (2006) Ligustilide inhibits vascular smooth muscle cells proliferation. Eur J Pharmacol 542:136

    Article  PubMed  CAS  Google Scholar 

  439. Liang MJ, He LC (2006) Inhibitory effects of ligustilide and butylidenephthalide on bFGF-stimulated proliferation of rat smooth muscle cells. Acta Pharm Sin 41:161

    CAS  Google Scholar 

  440. Yang P, Zhang W, Rui Y (2004) Use of ligustilide for prevention and treatment of atherosclerosis. Chin Pat 1543859

    Google Scholar 

  441. Miyazawa M, Tsukamoto T, Anzai J, Ishikawa Y (2004) Insecticidal effect of phthalides and furanocoumarins from Angelica acutiloba against Drosophila melanogaster. J Agric Food Chem 52:4401

    Article  PubMed  CAS  Google Scholar 

  442. Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KHC, Liu Z, Zhang S, Cantrell CL, Zhang J (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464

    Article  PubMed  CAS  Google Scholar 

  443. Chae SH, Kim S Il, Yeon SH, Lee SW, Ahn YJ (2011) Adulticidal activity of phthalides identified in Cnidium officinale rhizome to B- and Q-biotypes of Bemisia tabaci. J Agric Food Chem 59:8193

    Article  PubMed  CAS  Google Scholar 

  444. Noto T, Sawada M, Ando K, Koyama K (1969) Some biological properties of mycophenolic acid. J Antibiot 22:165

    Article  CAS  Google Scholar 

  445. Abraham EP (1945) The effect of mycophenolic acid on the growth of Staphylococcus aureus in heart broth. Biochem J 39:398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  446. Jones EL, Epinette WW, Hackney VC, Menendez L, Frost P (1975) Treatment of psoriasis with oral mycophenolic acid. J Invest Dermatol 65:537

    Article  PubMed  CAS  Google Scholar 

  447. Hodge EE (1996) The role of mycophenolate mofetil in clinical renal transplantation. World J Urol 14:249

    Article  PubMed  CAS  Google Scholar 

  448. Staatz CE, Tett SE (2007) Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46:13

    Article  PubMed  CAS  Google Scholar 

  449. Van Gelder T, Hesselink DA (2015) Mycophenolate revisited. Transpl Int 28:508

    Article  PubMed  CAS  Google Scholar 

  450. Cégiéla-Carlioz P, Bessière JM, David B, Mariotte AM, Gibbons S, Dijoux-Franca MG (2005) Modulation of multi-drug resistance (MDR) in Staphylococcus aureus by Osha (Ligusticum porteri L., Apiaceae) essential oil compounds. Flavour Fragr J 20:671

    Article  CAS  Google Scholar 

  451. Radcliff FJ, Fraser JD, Wilson ZE, Heapy AM, Robinson JE, Bryant CJ, Flowers CL, Brimble MA (2008) Anti-Helicobacter pylori activity of derivatives of the phthalide-containing antibacterial agents spirolaxine methyl ether, CJ-12,954, CJ-13,013, CJ-13,102, CJ-13,104, CJ-13,108, and CJ-13,015. Bioorg Med Chem 16:6179

    Article  PubMed  CAS  Google Scholar 

  452. Awaad AS, El-Meligy RM, Soliman GA (2013) Natural products in treatment of ulcerative colitis and peptic ulcer. J Saudi Chem Soc 17:101

    Article  CAS  Google Scholar 

  453. Guzman JD, Evangelopoulos D, Gupta A, Prieto JM, Gibbons S, Bhakta S (2013) Antimycobacterials from lovage root (Ligusticum officinale Koch). Phytother Res 27:993

    Article  PubMed  CAS  Google Scholar 

  454. Qin XD, Dong ZJ, Liu JK, Yang LM, Wang RR, Zheng YT, Lu Y, Wu YS, Zheng QT (2006) Concentricolide, an anti-HIV agent from the ascomycete Daldinia concentrica. Helv Chim Acta 89:127

    Article  CAS  Google Scholar 

  455. Azuma M, Yoshida M, Horinouchi S, Beppu T (1990) Basidifferquinone, a new inducer for fruiting-body formation of a Basidiomycetes Favolus arcularius from a Streptomyces strain I. Screening and isolation. Agric Biol Chem 54:1441

    CAS  Google Scholar 

  456. Azuma M, Yoshida M, Horinouchi S, Beppu T (1993) Basidifferquinone analogues, basidifferquinone B and C, which induce fruiting-body formation of a basidiomycete, Favolus arcularius. Biosci Biotechnol Biochem 57:344

    Article  PubMed  CAS  Google Scholar 

  457. Sekiya K, Tezuka Y, Tanaka K, Prasain JK, Namba T, Katayama K, Koizumi T, Maeda M, Kondo T, Kadota S (2000) Distribution, metabolism and excretion of butylidenephthalide of Ligustici Chuanxiong Rhizoma in hairless mouse after dermal application. J Ethnopharmacol 71:401

    Article  PubMed  CAS  Google Scholar 

  458. Yan R, Nga LK, Li SL, Yun KT, Lin G (2008) Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma Chuanxiong, in the rat. Drug Metab Dispos 36:400

    Article  PubMed  CAS  Google Scholar 

  459. Ding C, Sheng Y, Zhang Y, Zhang J, Du C (2008) Identification and comparison of metabolites after oral administration of essential oil of Ligusticum chuanxiong or its major constituent ligustilide in rats. Planta Med 74:1684

    Article  PubMed  CAS  Google Scholar 

  460. Guo J, Duan JA, Shang EX, Tang Y, Qian D (2009) Determination of ligustilide in rat brain after nasal administration of essential oil from Rhizoma Chuanxiong. Fitoterapia 80:168

    Article  PubMed  CAS  Google Scholar 

  461. Ma Z, Bai L (2013) Anti-inflammatory effects of Z-ligustilide nanoemulsion. Inflammation 36:294

    Article  PubMed  CAS  Google Scholar 

  462. Lu Y, Liu S, Zhao Y, Zhu L, Yu S (2014) Complexation of Z-ligustilide with hydroxypropyl-β-cyclodextrin to improve stability and oral bioavailability. Acta Pharm 64:211

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

León, A., Del-Ángel, M., Ávila, J.L., Delgado, G. (2017). Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products. Progress in the Chemistry of Organic Natural Products, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-45618-8_2

Download citation

Publish with us

Policies and ethics