Skip to main content

Crackling Noise in Digital and Real Rocks–Implications for Forecasting Catastrophic Failure in Porous Granular Media

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

‘Crackling noise’ occurs in a wide variety of systems that respond to steady-state external forcing in an intermittent way, leading to sudden bursts of energy release similar to those heard when crumpling a piece of paper or listening to a fire. In rock physics sudden changes in internal stress associated with microscopically-brittle rupture events lead to acoustic emissions that can be recorded on the sample boundary, and used to infer the state of internal damage. Crackling noise is inherently stochastic, but the population of events often exhibits remarkably robust scaling properties, in terms of the source area, duration, energy, and in the waiting time between events. Here we describe how these scaling properties emerge and evolve spontaneously in a fully-dynamic discrete element model of sedimentary rocks subject to uniaxial compression applied at a constant strain rate. The discrete elements have structural disorder similar to that of a real rock, and this is the only source of heterogeneity. Despite the stationary strain rate applied and the lack of any time-dependent weakening processes, the results are all characterized by emergent power law distributions over a broad range of scales, in agreement with experimental observation. As deformation evolves, the scaling exponents change systematically in a way that is similar to the evolution of damage in experiments on real sedimentary rocks . The potential for real-time forecasting of catastrophic failure obeying such scaling rules is then examined by using synthetic and real data from laboratory tests and prior to volcanic eruptions. The combination of non-linearity in the constitutive rules and an irreducible stochastic component governed by the material heterogeneity and finite sampling of AE data leads to significant variations in the precision and accuracy of the forecast failure time. This leads to significant proportion of ‘false alarms’ (forecast too early) and ‘missed events’ (forecast too late), as well as an over-optimistic assessments of forecasting power and quality when the failure time is known (the ‘benefit of hindsight’). The evolution becomes progressively more complex, and the forecasting power diminishes, in going from ideal synthetics to controlled laboratory tests to open natural systems at larger scales in space and time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Bak, C. Tang, Earthquakes as a self-organised critical phenomenon. J. Geophys. Res. 94, 15635–15637 (1989)

    Article  ADS  Google Scholar 

  2. W.H. Bakun et al., Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437, 969–974 (2005). doi:10.1038/nature04067

    Article  ADS  Google Scholar 

  3. P. Ball, How rocks break. Physics 7, 16 (2014)

    Article  Google Scholar 

  4. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962)

    Article  MathSciNet  Google Scholar 

  5. J. Baró, Á. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Statistical similarity between the compression of a porous material and earthquakes. Phys. Rev. Lett. 110, 088702 (2013)

    Article  ADS  Google Scholar 

  6. A.F. Bell, M. Naylor, M.J. Heap, I.G. Main, Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method. Geophys. Res. Lett. 38, L15304 (2011). doi:10.1029/2011GL048155

    ADS  Google Scholar 

  7. A.F. Bell, M. Naylor, I.G. Main, Convergence of the frequency-size distribution of global earthquakes. Geophys. Res. Lett. 40, 2585–2589 (2013a). doi:10.1002/grl.50416

    Article  ADS  Google Scholar 

  8. A.F. Bell, M. Naylor, I.G. Main, The limits of predictability of volcanic eruptions from accelerating rates of earthquakes. Geophys. J. Int., (2013b), doi:10.1093/gji/ggt191

  9. A.F. Bell, C.R.J. Kilburn, I.G. Main, Volcanic eruptions: real-time forecasting, in Encyclopedia of Earthquake Engineering, ed. by M. Beer, E. Patelli, I. Kougioumtzoglou, S.-K. Au (Springer, Berlin, 2015). doi:10.1007/978-3-642-36197-5_43-1

    Google Scholar 

  10. P. Bésuelle, G. Viggiani, N. Lenoir, J. Desrues, M. Bornert, X-ray micro CT for studying strain localization in clay rocks under triaxial compression. J. Strain Anal. Eng. Des. 40(2), 185–197 (2006)

    Google Scholar 

  11. A., Bruce, D. Wallace, Critical point phenomena: universal physics at large lengthy scales, in Davies, P. (ed.) (The New Physics, Cambridge, 1989), p. 516

    Google Scholar 

  12. S.F.M. Chastin, I.G. Main, Statistical analysis of daily seismic event rate as a precursor to volcanic eruptions. Geophys. Res. Lett. 30(13), 1671 (2003). doi:10.1029/2003GL016900

    Article  ADS  Google Scholar 

  13. S. Colombelli, A. Zollo, G. Festa, M. Picozzi, Evidence for a difference in rupture initiation between small and large earthquakes. Nat. Commun. 5, 3958 (2014). doi:10.1038/ncomms4958

    Article  ADS  Google Scholar 

  14. J.W. Gibbs, Elementare Grundlagen der Statistischen Mechanik (Johann Ambrosius Barth, Leipzig, 1905)

    MATH  Google Scholar 

  15. A.A. Griffith, The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A 221, 163 (1920)

    Article  ADS  Google Scholar 

  16. A.A. Griffith, The theory of rupture,, ed. by C.B. Biezzo, J.M. Burgers, J. Waltman Jr., Proceedings of the First International Congress on Applied Mechanics, (Delft, 1924), p. 55

    Google Scholar 

  17. J.L. Hardebeck, K.R. Felzer, A.J. Michael, Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant. J. Geophys. Res. 113, B08310 (2008). doi:10.1029/2007JB005410

    Article  ADS  Google Scholar 

  18. C.G. Hatton, I.G. Main, P.G. Meredith, A comparison of seismic and structural measurements of fractal dimension during tensile subcritical crack growth. J. Struct. Geol. 15, 1485–1495 (1993)

    Article  ADS  Google Scholar 

  19. A.G. Hawkes, Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Hirata, T. Satoh, K. Ito, Fractal structure of spatial distribution of microfracturing in rock. Geophys. J. Roy. Astr. Soc. 90, 369–37 (1987)

    Article  ADS  Google Scholar 

  21. S. Hough, Predicting the Unpredictable: The Tumultuous Science of Earthquake Prediction (Princeton University Press, 2009) p. 272

    Google Scholar 

  22. S.C. Jaume, L.R. Sykes, Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large great earthquakes. Pure Appl. Geophys. 155, 279–305 (1999)

    Article  ADS  Google Scholar 

  23. T. Jordan, Y. Chen, P. Gasparini, R. Madariaga, I. Main, W. Marzocchi, G. Papadopoulos, G. Sobolev, K. Yamaoka, J. Zschau, Operational earthquake forecasting: state of knowledge and guidelines for utilization. Ann. Geophys. 54(4), 361–391 (2011). doi:10.4401/ag-5350

    Google Scholar 

  24. H. Kanamori, Earthquake physics and real-time seismology. Nature 451, 271–273 (2008). doi:10.1038/nature06585

    Article  ADS  Google Scholar 

  25. F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Approach to failure in porous granular materials under compression. Phys. Rev. E. 88, 062207 (2013). doi:10.1103/PhysRevE.88.062207

    Article  ADS  Google Scholar 

  26. F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Rupture cascades in a discrete element model of a porous sedimentary rock. Phys. Rev. Lett. 112, 065501 (2014). doi:10.1103/PhysRevLett.112.065501

    Article  ADS  Google Scholar 

  27. B. Lawn, Fracture of Brittle Solids, 2nd edn. (Cambridge University Press, Cambridge, 1993). p. 371

    Book  Google Scholar 

  28. S. Lennartz-Sassinek, I.G. Main, M. Zaiser, C. Graham, Acceleration and localization of subcritical crack growth in a natural composite material. Phys. Rev. E 90, 052401 (2014). doi:10.1103/PhysRevE.90.052401

    Article  ADS  Google Scholar 

  29. I.G. Main, A modified Griffith criterion for the evolution of damage with a fractal distribution of crack lengths: application to seismic event rates and b-values. Geophys. J. Int. 107, 353–362 (1991)

    Article  ADS  Google Scholar 

  30. I.G. Main, Earthquakes as critical phenomena: Implications for probabilistic seismic hazard analysis. Bull. Seismol. Soc. Am. 85, 1299–1308 (1995)

    Google Scholar 

  31. I. Main, Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys. 34, 433–462 (1996)

    Article  ADS  Google Scholar 

  32. I.G. Main, A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences. Geophys. J. Int. 142, 151–161 (2000)

    Article  ADS  Google Scholar 

  33. I.G. Main, L. Li, J. McCloskey, M. Naylor, Effect of the Sumatran mega-earthquake on the global magnitude cut-off and event rate. Nat. Geosci. 1, p142 (2008)

    Article  ADS  Google Scholar 

  34. I.G. Main, M. Naylor, Entropy production and self-organized (sub) criticality in earthquake dynamics. Phil. Trans. Roy. Soc. Lond. A 2010(368), 131–144 (2010). doi:10.1098/rsta.2009.0206

    Article  Google Scholar 

  35. I.G. Main, A.F. Bell, P.G. Meredith, S. Geiger, S. Touati, The dilatancy-diffusion hypothesis and earthquake predictability, in Faulting, Fracturing and Igneous Intrusion in the Earth’s Crust, ed. by D. Healy, R.W.H. Butler, Z.K. Shipton, R.H. Sibson (Geological Society Special Publications, London, 2012), pp. 215–230. doi:10.1144/SP367.15

    Google Scholar 

  36. K. Mair, Experimental studies of fault zone development in a porous sandstone, Ph.D. thesis, University of Edinburgh (1997)

    Google Scholar 

  37. K. Mair, I.G. Main, S.C. Elphick, Sequential development of deformation bands in the laboratory. J. Struct. Geol. 22, 25–42 (2000)

    Article  ADS  Google Scholar 

  38. K. Mair, S. Abe, Breaking up: comminution mechanisms in sheared simulated fault gouge. Pure Appl. Geophys. 168, 2277–2288 (2011). doi:10.1007/s00024-011-0266-6

    Article  ADS  Google Scholar 

  39. W. Marzocchi, M. Bebbington, Probabilistic eruption forecasting at short and long time scales. Bull. Volcanol. 74(8), 1777–1805 (2012)

    Article  ADS  Google Scholar 

  40. J. McCloskey, S.S. Nalbant, S. Steacy, Indonesian earthquake: earthquake risk from co-seismic stress. Nature 434, 291 (2005). doi:10.1038/434291a

    Article  ADS  Google Scholar 

  41. A.P.K.A. Mehta, D.Y. Ben-Zion, Universal mean moment rate profiles of earthquake ruptures. Phys. Rev. E 73, 056104 (2006)

    Article  ADS  Google Scholar 

  42. P.G. Meredith, B.K. Atkinson, Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys. J. Roy. Astron. Soc. 75, 1–21 (1983). doi:10.1111/j.1365-246X.1983.tb01911.x

    Article  ADS  Google Scholar 

  43. P.G. Meredith, B.K. Atkinson, Experimental fracture mechanics data for rocks and minerals, in Fracture Mechanics of Rocks, ed. by Atkinson B.K (Academic Press, London, 1987). chapter 11

    Google Scholar 

  44. G.M. Molchan, T.L. Kronrod, A.K. Nekrasova, Immediate foreshocks: time variation of the b-value. Phys. Earth Planet. Inter. 111(3–4), 229–240 (1999). doi:10.1016/S0031-9201(98)00163-0

    Article  ADS  Google Scholar 

  45. M. Naylor, J. Greenhough, J. McCloskey, A.F. Bell, I.G. Main, Statistical evaluation of characteristic earthquakes in the frequency-magnitude distributions of Sumatra and other subduction zone regions. Geophys. Res. Lett. 36, L20303 (2009). doi:10.1029/2009GL040460

    Article  ADS  Google Scholar 

  46. H. Nechad, A. Helmstetter, R. El Guerjouma, D. Sornette, Andrade and critical time-to-failure laws in fiber-matrix composites: experiments and model. J. Mech. Phys. Solids 53(5), 1099–1127 (2005)

    Article  ADS  Google Scholar 

  47. Z. Olami, H.J.S. Feder, K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244 (1992)

    Article  ADS  Google Scholar 

  48. I.O. Ojala, I.G. Main, B.T. Ngwenya, Strain rate and temperature dependence of Omori law scaling constants of AE data: implications for earthquake foreshock-aftershock sequences. Geophys. Res. Lett. 31, L24617 (2004). doi:10.1029/2004GL020781

    Article  ADS  Google Scholar 

  49. Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988)

    Article  Google Scholar 

  50. M.D. Petersen, T. Cao, K.W. Campbell, A.D. Frankel, Time-independent and time-dependent seismic hazard assessment for the state of California: uniform California earthquake rupture forecast model 1.0. Seismol. Res. Lett. 78, 99–109 (2007)

    Article  Google Scholar 

  51. J. Rundle, E. Preston, S. McGinnis, W. Klein, Why earthquakes stop: growth and arrest in stochastic fields. Phys. Rev. Lett. 80, 5698 (1998)

    Article  ADS  Google Scholar 

  52. J.B. Rundle, W. Klein, Nonclassical nucleation and growth of cohesive tensile cracks. Phys. Rev. Lett. 63, 171 (1989)

    Article  ADS  Google Scholar 

  53. E.K.H. Salje, K.A. Dahmen, Crackling noise in disordered materials. Ann. Rev. Condens. Matter Phys. 5, 233–254 (2014). doi:10.1146/annurev-conmatphys-031113-133838

    Article  Google Scholar 

  54. P.R. Sammonds, P.G. Meredith, I.G. Main, Role of pore fluids in the generation of seismic precursors to shear fracture. Nature 359, 228–230 (1992)

    Google Scholar 

  55. C. Saouridis, J. Mazars, Prediction of the failure and size effect in concrete via a bi-scale damage approach. Eng. Comput. 9, 329–344 (1992)

    Article  Google Scholar 

  56. D.R. Scott, Seismicity and stress rotation in a granular model of the brittle crust. Nature 381, 592–595 (1996). doi:10.1038/381592a0

    Article  ADS  Google Scholar 

  57. J.P. Sethna, K.A. Dahmen, C.R. Myers, Crackling noise. Nature 410, 242–250 (2001). doi:10.1038/35065675

    Article  ADS  Google Scholar 

  58. D. Sornette, G. Ouillon, Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205, 1–26 (2012)

    Article  Google Scholar 

  59. D. Spasojevic, S. Bukvi, S. Miloevi, H.E. Stanley, Barkhausen noise: elementary signals, power laws, and scaling relations. Phys. Rev. E 54, 2531–2546 (1996)

    Google Scholar 

  60. S. Touati, M. Naylor, I.G. Main, The origin and non-universality of the earthquake inter-event time distribution. Phys. Rev. Lett. 102, 168501 (2009). doi:10.1103/PhysRevLett.102.168501

    Article  ADS  Google Scholar 

  61. Turcotte, D.L., Fractals and chaos in geology and geophysics. (Cambridge, 1992), p. 221

    Google Scholar 

  62. J. Vasseur, F.B. Wadsworth, Y. Lavallée, A.F. Bell, I.G. Main, D.B. Dingwell, Heterogeneity: the key to failure forecasting. Sci. Rep. 5, 13259 (2015). doi:10.1038/srep13259

    Article  ADS  Google Scholar 

  63. M. Wyss (ed.), Evaluation of Proposed Earthquake Precursors (American Geophysical Union, Washington, DC, 1991). 94 pp

    Google Scholar 

  64. G. Yakovlev, J.B. Rundle, R. Shcherbakov, D.L. Turcotte, Inter-arrival time distribution for the non-homogeneous Poisson process. (Elsevier Science, 2005), http://arXiv.org/abs/cond-mat/0507657

  65. L. Zhang, E.K.H. Salje, X. Ding, J. Sun, Strain-rate dependence of twinning avalanches at high speed impact. Appl. Phys. Lett. 104, 162906 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The bulk of this paper is based on the Néel lecture delivered by IGM at the 2014 European Union of Geosciences meeting in Vienna, and a shortened version delivered to the ‘Avalanches in Functional Materials and Geophysics’ meeting in Cambridge the same year. FK and AFB made significant material contributions to the presentations, and to the writing of this paper. IGM is grateful to Philip Meredith for many insights into rock physics that motivated the work described in the paper, as well as the many co-authors cited in the reference list, especially Jeremie Vasseur whose experimental results are reproduced in Fig. 5.7. Much of the work described in this paper was supported by the European Commission via the Complexity-NET pilot project ‘LOCAT’ and by the NERC project ‘EFFORT’, NE/H02297X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Main .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Main, I.G., Kun, F., Bell, A.F. (2017). Crackling Noise in Digital and Real Rocks–Implications for Forecasting Catastrophic Failure in Porous Granular Media. In: Salje, E., Saxena, A., Planes, A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-45612-6_5

Download citation

Publish with us

Policies and ethics