Skip to main content

Towards a Quantitative Analysis of Crackling Noise by Strain Drop Measurements

  • Chapter
  • First Online:
Avalanches in Functional Materials and Geophysics

Abstract

The method of measuring strain drops with a Dynamic Mechanical Analyzer (DMA) at slowly varying stress has a considerable potential to become an interesting complementary tool for the study of mechanical failure and earthquake dynamics in micron-sized materials. Evidence for this claim is provided by measurements of the \(\mathrm {SiO_2}\)-based porous materials Vycor and Gelsil under slow uniaxial compression at constant force rates of \(10^{-4}{-}10^{-3}\,\mathrm{N s}^{-1}\) using a Diamond DMA (Dynamical Mechanical Analyzer, Perkin Elmer). The jerky evolution of the sample’s height with time is analyzed in order to determine the corresponding power-law exponents for the maximum velocity distribution, the squared maximum velocity distribution as well as the aftershock activity in the region before macroscopic failure. A comparison with recent results from acoustic emission (AE) data on the same materials (J. Baró, Á. Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives, Phys. Rev. Lett. 110, 088702 (2013)) shows similitude in the statistics, although the two methods operate on different spatial and temporal scales. Moreover, the obtained power-law exponents are in reasonable agreement with theoretical mean-field values (M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. B 87, 022126 (2013)). The results indicate that the failure dynamics of materials can be well studied by measuring strain drops under slow compression, which opens the possibility to study earthquake dynamics in the laboratory also at non-ambient conditions, i.e. at high temperatures or under confining liquid pore pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.K.H. Salje, D.E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, W. Schranz, Philos. Mag. Lett. 91, 554 (2011)

    Google Scholar 

  2. J. Baró, Á. Corral, X. Illa, A. Planes, E.K.H. Salje, W. Schranz, D.E. Soto-Parra, E. Vives, Phys. Rev. Lett. 110, 088702 (2013)

    Article  ADS  Google Scholar 

  3. F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. Lett. 112, 065501 (2014)

    Article  ADS  Google Scholar 

  4. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)

    Article  ADS  Google Scholar 

  5. E.K.H. Salje, K.A. Dahmen, Crackling noise in disordered materials, ed. J.S. Langer. Annu. Rev. Condens. Matter Phys. 5, 233–254 (2014)

    Google Scholar 

  6. G. Durin, S. Zapperi, in The Science of Hysteresis, vol. II, ed. by G. Bertotti, I. Mayergoyz (Elsevier, Amsterdam, 2006), pp. 181–267

    Google Scholar 

  7. F. Colaiori, Adv. Phys. 57, 287 (2008)

    Article  ADS  Google Scholar 

  8. D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Science 26, 1188 (2006)

    Article  ADS  Google Scholar 

  9. M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.-R. Grasso, Nature 410, 667 (2001)

    Article  ADS  Google Scholar 

  10. A. Vinogradov, I.S. Yasnikov, Acta Materialia 70, 8 (2014)

    Article  Google Scholar 

  11. M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, E. Arzt, Philos. Mag. 88, 30–32, 3861 (2008)

    Google Scholar 

  12. M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, M. Stipcich, Phys. Rev. B 81, 174102 (2010)

    Article  ADS  Google Scholar 

  13. J. Baró, J.-M. Martin-Olalla, F.J. Romero, M.C. Gallardo, E.K.H. Salje, E. Vives, A. Planes, J. Phys.-Condens. Matter 26, 125401 (2014)

    Google Scholar 

  14. E.K.H. Salje, J. Koppensteiner, M. Reinecker, W. Schranz, A. Planes, Appl. Phys. Lett. 95, 231908 (2009)

    Article  ADS  Google Scholar 

  15. L.I. Salminen, A.I. Tolvanen, M.J. Alava, Phys. Rev. Lett. 89, 185503 (2002)

    Article  ADS  Google Scholar 

  16. S. Santucci, P.P. Cortet, S. Deschanel, L. Vanel, S. Ciliberto, Europhys. Lett. 74(4), 595 (2006)

    Article  ADS  Google Scholar 

  17. M. Stojanova, S. Santucci, L. Vanel, O. Ramos, Phys. Rev. Lett. 112, 115502 (2014)

    Article  ADS  Google Scholar 

  18. E.K.H. Salje, G.I. Lampronti, D.E. Soto-Parra, J. Bar, A. Planes, E. Vives, Am. Mineral. 98, 609 (2013)

    Article  ADS  Google Scholar 

  19. G.F. Nataf, P.O. Castillo-Villa, J. Baró, X. Illa, E. Vives, A. Planes, Phys. Rev. E 90, 022405 (2014)

    Article  ADS  Google Scholar 

  20. G. Nataf, P.O. Castillo-Villa, P. Sellappan, W.M. Kriven, E. Vives, A. Planes, E.K.H. Salje, J. Phys. Condens. Matter 26, 275401 (2014)

    Article  ADS  Google Scholar 

  21. P.O. Castillo-Villa, J. Baró, A. Planes, E.K.H. Salje, P. Sellappan, W.M. Kriven, E. Vives, J. Phys. Condens. Matter 25, 292202 (2013)

    Article  Google Scholar 

  22. E.K.H. Salje, X. Wang, X. Ding, J. Sun, Phys. Rev. B 90, 064103 (2014)

    Article  ADS  Google Scholar 

  23. E. Dul’kin, E.K.H. Salje, O. Aktas, R.W. Whatmore, M. Roth, Applied. Phys. Lett. 105, 212901 (2014)

    Google Scholar 

  24. E.K.H. Salje, W. Schranz, Z. Kristallographie 226, 1 (2011)

    Article  ADS  Google Scholar 

  25. P. Levitz, G. Ehret, S.K. Sinha, J.M. Drake, J. Chem. Phys. 95, 6151 (1991)

    Article  ADS  Google Scholar 

  26. N. Eschricht, E. Hoinkis, F. Mdler, P. Schubert-Bischoff, Stud. Surf. Sci. Catal. 144, 355 (2002)

    Article  Google Scholar 

  27. J. Koppensteiner, W. Schranz, M.A. Carpenter, Phys. Rev. B 81, 024202 (2010)

    Article  ADS  Google Scholar 

  28. A. Ghaffar, Confinement-Induced Structural Changes of Alkali Metals in Nanoporous Systems (Universität Wien, Vienna, 2014)

    Google Scholar 

  29. W. Schranz, Phase Transit. 64, 103 (1997)

    Article  Google Scholar 

  30. Since we can measure length changes only when whole planes collapse, we have to multiply the typical crack length \(a\) by the number of broken bonds in one plane, but since the force that is acting on a bond is divided by the same number of broken bonds, the two terms cancel for the released elastic energy

    Google Scholar 

  31. We analyzed data only starting from the second cycle, since the first cycle seems to be contaminated by cracks due to tiny irregularities in the surface

    Google Scholar 

  32. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Deluca, A. Corral, Acta Geophys. 61, 1351 (2013)

    Article  ADS  Google Scholar 

  34. A.K. Hartmann, Big Practical Guide to Computer Simulations, 2nd edn. (World Scientific, Singapore, 2015)

    Book  Google Scholar 

  35. M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. E 87, 022126 (2013)

    Article  ADS  Google Scholar 

  36. T. Utsu, Y. Ogata, R.S. Matsuura, J. Phys. Earth 43, 1 (1995)

    Google Scholar 

  37. M. LeBlanc, L. Angheluta, K. Dahmen, N. Goldenfeld, Phys. Rev. Lett. 109, 105702 (2012)

    Article  ADS  Google Scholar 

  38. K. Dahmen, J.P. Sethna, Phys. Rev. B 53, 14872 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Austrian Science Fund (FWF) projects P28672-N36 and P27738-N28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Schranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soprunyuk, V., Puchberger, S., Schranz, W., Tröster, A., Vives, E., Salje, E.K.H. (2017). Towards a Quantitative Analysis of Crackling Noise by Strain Drop Measurements. In: Salje, E., Saxena, A., Planes, A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-45612-6_4

Download citation

Publish with us

Policies and ethics