Skip to main content

The Irreversibility Transition in Amorphous Solids Under Periodic Shear

  • Chapter
  • First Online:
Avalanches in Functional Materials and Geophysics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A fundamental problem in the physics of amorphous materials is understanding the transition from reversible to irreversible plastic behavior and its connection to the concept of yield. Currently, continuum materials modeling relies on the use of phenomenological yield thresholds, however, in many cases the transition from elastic to plastic behavior is gradual, which makes it difficult to identify an exact yield criterion . Recent work has shown that under periodic shear, amorphous solids undergo a transition from deterministic, periodic behavior to chaotic, diffusive behavior as a function of the strain amplitude. Furthermore, this transition has been related to a depinning-like transition in which cooperative avalanche events become system-spanning at the same point. Here we provide an overview of recent work focused on an understanding of the nature of yield in amorphous systems from a cooperative and dynamical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Argon, Acta metallurgica 27, 47 (1979)

    Article  Google Scholar 

  2. C. Maloney, A. Lemaître, Phys. Rev. E 74, 016118 (2006)

    Article  ADS  Google Scholar 

  3. P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007)

    Article  ADS  Google Scholar 

  4. M. Falk, J. Langer, Phys. Rev. E 57, 7192 (1998)

    Article  ADS  Google Scholar 

  5. P. Sollich, Phys. Rev. E 58, 738 (1998)

    Article  ADS  Google Scholar 

  6. P. Sollich, F. Lequeux, P. Hébraud, M. Cates, Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  7. L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 36001 (2009)

    Article  ADS  Google Scholar 

  8. N.V. Priezjev, Phys. Rev. E 87, 052302 (2013)

    Article  ADS  Google Scholar 

  9. N. Mangan, C. Reichhardt, C. Reichhardt, Phys. Rev. Lett. 100, 187002 (2008)

    Article  ADS  Google Scholar 

  10. L. Corté, P. Chaikin, J. Gollub, D. Pine, Nat. Phys. 4, 420 (2008)

    Article  Google Scholar 

  11. D. Pine, J. Gollub, J. Brady, A. Leshansky, Nature 438, 997 (2005)

    Article  ADS  Google Scholar 

  12. S. Slotterback, M. Mailman, K. Ronaszegi, M. van Hecke, M. Girvan, W. Losert, Phys. Rev. E 85, 021309 (2012)

    Article  ADS  Google Scholar 

  13. G. Petekidis, A. Moussaïd, P. Pusey, Phys. Rev. E 66, 051402 (2002)

    Article  ADS  Google Scholar 

  14. M. Lundberg, K. Krishan, N. Xu, C. O’Hern, M. Dennin, Phys. Rev. E 77, 041505 (2008)

    Article  ADS  Google Scholar 

  15. C.F. Schreck, R.S. Hoy, M.D. Shattuck, C.S. O’Hern (2013). arXiv preprint arXiv:1301.7492

  16. N.C. Keim, S.R. Nagel, Phys. Rev. Lett. 107, 10603 (2011)

    Article  ADS  Google Scholar 

  17. N.C. Keim, P.E. Arratia, Soft Matter (2013)

    Google Scholar 

  18. D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. E, 020301(R) (2013)

    Google Scholar 

  19. I. Regev, T. Lookman, C. Reichhardt, Phys. Rev. E 88, 062401 (2013)

    Article  ADS  Google Scholar 

  20. N.C. Keim, P.E. Arratia, Phys. Rev. Lett. 112, 028302 (2014)

    Article  ADS  Google Scholar 

  21. N. Perchikov, E. Bouchbinder, Phys. Rev. E 89, 062307 (2014)

    Article  ADS  Google Scholar 

  22. N.V. Priezjev, Phys. Rev. E 89, 012601 (2014)

    Article  ADS  Google Scholar 

  23. R. Jeanneret, D. Bartolo, Nat. Commun. 5 (2014)

    Google Scholar 

  24. K.H. Nagamanasa, S. Gokhale, A. Sood, R. Ganapathy, Phys. Rev. E 89, 062308 (2014)

    Article  ADS  Google Scholar 

  25. M.C. Rogers, K. Chen, L. Andrzejewski, S. Narayanan, S. Ramakrishnan, R.L. Leheny, J.L. Harden, Phys. Rev. E 90, 062310 (2014)

    Article  ADS  Google Scholar 

  26. E. Tjhung, L. Berthier, Phys. Rev. Lett. 114, 148301 (2015)

    Article  ADS  Google Scholar 

  27. D. Fiocco, G. Foffi, S. Sastry, J. Phys.: Condens. Matter 27, 194130 (2015)

    ADS  Google Scholar 

  28. M. Schulz, B.M. Schulz, S. Herminghaus, Phys. Rev. E 67, 052301 (2003)

    Article  ADS  Google Scholar 

  29. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  30. I. Regev, J. Weber, C. Reichhardt, K.A. Dahmen, T. Lookman, Nat. Commun. 6 (2015)

    Google Scholar 

  31. D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. Lett. 112, 025702 (2014)

    Article  ADS  Google Scholar 

  32. J. Yorke, E. Yorke, J. Stat. Phys. 21, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Tél, Y. Lai, Phys. Rep. 460, 245 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  35. H. Kantz, Phys. Lett. A 185, 77 (1994)

    Article  ADS  Google Scholar 

  36. H. Kantz, T. Schreiber, R. Mackay, Nonlinear Time Series Analysis, vol. 2000 (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  37. F. Takens, in Dynamical Systems and Turbulence, Warwick 1980 (Springer, Heidelberg, 1981), pp. 366–381

    Google Scholar 

  38. Z. Liu, G. Wang, K. Chan, J. Ren, Y. Huang, X. Bian, X. Xu, D. Zhang, Y. Gao, Q. Zhai, J. Appl. Phys. 114, 033521 (2013)

    Article  ADS  Google Scholar 

  39. E.J. Banigan, M.K. Illich, D.J. Stace-Naughton, D.A. Egolf, Nat. Phys. 9, 288 (2013)

    Article  Google Scholar 

  40. J. Knebel, M.F. Weber, E. Frey, Nat. Phys. 12, 204 (2016)

    Article  Google Scholar 

  41. H.-Y. Shih, T.-L. Hsieh, N. Goldenfeld, Nat. Phys. (2015)

    Google Scholar 

  42. S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Phys. Rev. B 82, 205435 (2010)

    Article  ADS  Google Scholar 

  43. T. Lookman, S. Shenoy, K. Rasmussen, A. Saxena, A. Bishop, Phys. Rev. B 67, 024114 (2003)

    Article  ADS  Google Scholar 

  44. A. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. Salje, J. Scott, Phys. Rev. B 61, 946 (2000)

    Article  ADS  Google Scholar 

  45. E. Ott, J. Sommerer, Phys. Lett. A 188, 39 (1994)

    Article  ADS  Google Scholar 

  46. D.J. Lacks, M.J. Osborne, Phys. Rev. Lett. 93, 255501 (2004)

    Article  ADS  Google Scholar 

  47. E. Bouchbinder, J. Langer, I. Procaccia, Phys. Rev. E 75, 036108 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. L. Boué, H. Hentschel, I. Procaccia, I. Regev, J. Zylberg, Phys. Rev. B 81, 100201 (2010)

    Article  ADS  Google Scholar 

  49. K.M. Salerno, C.E. Maloney, M.O. Robbins, Phys. Rev. Lett. 109, 105703 (2012)

    Article  ADS  Google Scholar 

  50. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, Advanced Book Program, 1992)

    Google Scholar 

  51. M. Kardar, Statistical Physics of Fields (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  52. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009)

    Article  ADS  Google Scholar 

  53. D.S. Fisher, K. Dahmen, S. Ramanathan, Y. Ben-Zion, Phys. Rev. Lett. 78, 4885 (1997)

    Article  ADS  Google Scholar 

  54. P.Y. Chan, G. Tsekenis, J. Dantzig, K.A. Dahmen, N. Goldenfeld, Phys. Rev. Lett. 105, 015502 (2010)

    Article  ADS  Google Scholar 

  55. N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, K.A. Dahmen, Phys. Rev. Lett. 109, 095507 (2012)

    Article  ADS  Google Scholar 

  56. D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Science 312, 1188 (2006)

    Article  ADS  Google Scholar 

  57. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318, 251 (2007)

    Article  ADS  Google Scholar 

  58. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A. Dahmen, Sci. Rep. 4 (2014)

    Google Scholar 

  59. J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014)

    Google Scholar 

  60. A.R. Jie Lin, E. Lerner, M. Wyart (2014). arXiv:1403.6735v2 [cond-mat.soft]

  61. R. Dasgupta, H. Hentschel, I. Procaccia, Phys. Rev. Lett. 109, 255502 (2012)

    Article  ADS  Google Scholar 

  62. E. Lerner, I. Procaccia, Phys. Rev. E 79, 066109 (2009)

    Article  ADS  Google Scholar 

  63. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)

    Article  ADS  Google Scholar 

  64. K.M. Salerno, M.O. Robbins, Phys. Rev. E 88, 062206 (2013)

    Article  ADS  Google Scholar 

  65. J. Lin, A. Saade, E. Lerner, A. Rosso, M. Wyart, EPL (Europhys. Lett.) 105, 26003 (2014)

    Article  ADS  Google Scholar 

  66. J. Lin, T. Gueudré, A. Rosso, M. Wyart, Phys. Rev. Lett. 115, 168001 (2015)

    Article  ADS  Google Scholar 

  67. P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Phys. Rev. Lett. 112, 235501 (2014)

    Article  ADS  Google Scholar 

  68. C. Rainone, P. Urbani, H. Yoshino, F. Zamponi, Phys. Rev. Lett. 114, 015701 (2015)

    Article  ADS  Google Scholar 

  69. B. Tyukodi, S. Patinet, S. Roux, D. Vandembroucq (2015). arXiv preprint arXiv:1502.07694

  70. A. Cavagna, Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  71. J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Phys. Rev. Lett. 70, 3347 (1993)

    Article  ADS  Google Scholar 

  72. A.A. Middleton, D.S. Fisher, Phys. Rev. B 47, 3530 (1993)

    Article  ADS  Google Scholar 

  73. P. Jaiswal, I. Procaccia, C. Rainone, M. Singh (2016). arXiv preprint arXiv:1601.02196

  74. T. Kawasaki, L.  Berthier (2015). arXiv preprint arXiv:1507.04120

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turab Lookman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Regev, I., Lookman, T. (2017). The Irreversibility Transition in Amorphous Solids Under Periodic Shear. In: Salje, E., Saxena, A., Planes, A. (eds) Avalanches in Functional Materials and Geophysics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-45612-6_11

Download citation

Publish with us

Policies and ethics