Skip to main content

Dispersion Interaction Between Two Atoms or Molecules

  • Chapter
  • First Online:
Non-Relativistic QED Theory of the van der Waals Dispersion Interaction

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

  • 457 Accesses

Abstract

In this chapter, diagrammatic time-dependent perturbation theory is employed to calculate the Casimir-Polder dispersion potential between two neutral electric dipole polarisable atoms or molecules. Its computation via the minimal-coupling scheme is summarised first. Next, it is shown how the energy shift may be computed more simply by adopting the multipolar Hamiltonian in the electric dipole approximation. In this second framework the force is mediated by the exchange of two virtual photons, and the Casimir-Polder formula results on summing the contribution from twenty-four time-ordered diagrams evaluated at fourth-order of perturbation theory. The potential is obtained for oriented as well as for isotropic systems separated beyond the region of wave function overlap. Asymptotically limiting forms of the interaction energy applicable in the near-and far-zone regions are also found. The former reproduces the London dispersion formula, while the latter exhibits an inverse seventh power law due to the effects of retardation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Göppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys Leipzig 9:273

    Article  Google Scholar 

  2. Casimir HBG, Polder D (1948) The influence of retardation on the London van der Waals forces. Phys Rev 73:360

    Article  CAS  Google Scholar 

  3. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8

    Article  CAS  Google Scholar 

  4. Feynman RP (1949) The theory of positrons. Phys Rev 76:749

    Article  CAS  Google Scholar 

  5. Feynman RP (1949) Space-time approach to quantum electrodynamics. Phys Rev 76:769

    Article  Google Scholar 

  6. Schweber SS (1986) Feynman and the visualisation of space-time processes. Rev Mod Phys 58:449

    Article  Google Scholar 

  7. Ward JF (1965) Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory. Rev Mod Phys 37:1

    Article  Google Scholar 

  8. Power EA (1964) Introductory Quantum Electrodynamics. Longmans, London

    Google Scholar 

  9. Craig DP, Thirunamachandran T (1998) Molecular Quantum Electrodynamics. Dover, New York

    Google Scholar 

  10. Power EA, Thirunamachandran T (1983) Quantum electrodynamics with nonrelativistic sources. II. Maxwell fields in the vicinity of an atom. Phys Rev A 28:2663

    Article  CAS  Google Scholar 

  11. Salam A (1997) Maxwell field operators, the energy density, and the Poynting vector calculated using the minimal-coupling framework of molecular quantum electrodynamics in the Heisenberg picture. Phys Rev A 56:2579

    Article  CAS  Google Scholar 

  12. Power EA, Thirunamachandran T (1999) Time dependence of operators in minimal and multipolar nonrelativistic quantum electrodynamics. I. Electromagnetic fields in the neighbourhood of an atom. Phys Rev A 60:4927

    Article  CAS  Google Scholar 

  13. Alligood BW, Salam A (2007) On the application of state sequence diagrams to the calculation of the Casimir-Polder potential. Mol Phys 105:395

    Article  CAS  Google Scholar 

  14. Salam A (2010) Molecular Quantum Electrodynamics. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  15. Andrews DL, Thirunamachandran T (1977) On three-dimensional rotational averages. J Chem Phys 67:5026

    Article  CAS  Google Scholar 

  16. Craig DP, Power EA (1969) The asymptotic Casimir-Polder potential from second-order perturbation theory and its generalisation for anisotropic polarisabilities. Int J Quant Chem 3:903

    Article  Google Scholar 

  17. Power EA, Thirunamachandran T (1983) Quantum electrodynamics with nonrelativistic sources. III. Intermolecular interactions. Phys Rev A 28:2671

    Article  CAS  Google Scholar 

  18. Power EA, Thirunamachandran T (1993) Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states. Phys Rev A 47:2539

    Article  CAS  Google Scholar 

  19. Salam A (2008) Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint. Int Rev Phys Chem 27:405

    Article  CAS  Google Scholar 

  20. Casimir HBG (1949) Sur les forces van der Waals-London. J Chim Phys 46:407

    CAS  Google Scholar 

  21. Milonni PW (1994) The Quantum Vacuum. Academic Press, San Diego

    Google Scholar 

  22. Power EA, Thirunamachandran T (1994) Zero-point energy differences and many-body dispersion forces. Phys Rev A 50:3929

    Article  CAS  Google Scholar 

  23. Feinberg G, Sucher J (1970) General theory of the van der Waals interaction: a model-independent approach. Phys Rev A 2:2395

    Article  Google Scholar 

  24. Milonni PW (1982) Casimir forces without the vacuum radiation field. Phys Rev A 25:1315

    Article  CAS  Google Scholar 

  25. Milonni PW, Shih M-L (1992) Source theory of Casimir force. Phys Rev A 45:4241

    Article  CAS  Google Scholar 

  26. Schwinger JS, DeRaad LL Jr, Milton KA (1978) Casimir effect in dielectrics. Ann Phys 115:1 (NY)

    Article  CAS  Google Scholar 

  27. Spruch L, Kelsey EJ (1978) Vacuum fluctuation and retardation effects on long-range potentials. Phys Rev A 18:845

    Article  CAS  Google Scholar 

  28. Compagno G, Passante R, Persico F (1983) The role of the cloud of virtual photons in the shift of the ground-state energy of a hydrogen atom. Phys Lett A 98:253

    Article  Google Scholar 

  29. Power EA, Thirunamachandran T (1993) Casimir-Polder potential as an interaction between induced dipoles. Phys Rev A 48:4761

    Article  CAS  Google Scholar 

  30. Craig DP, Thirunamachandran T (1999) New approaches to chiral discrimination in coupling between molecules. Theo Chem Acc 102:112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Salam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Salam, A. (2016). Dispersion Interaction Between Two Atoms or Molecules. In: Non-Relativistic QED Theory of the van der Waals Dispersion Interaction. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-45606-5_3

Download citation

Publish with us

Policies and ethics