Skip to main content

Plates and Shells

  • Chapter
  • First Online:
A Concise Introduction to Elastic Solids
  • 1100 Accesses

Abstract

Plates are flat structures whose planar dimensions are much larger than the thickness. Shells are curved structures whose thickness is much smaller than the other structural dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Kirchhoff, G. (1850). Journal of Mathematics (Crelle), 40.

    Google Scholar 

  • Libai, A., & Simmonds, J. G. (1998). The nonlinear theory of elastic shells. Cambridge: Cambridge University Press.

    Google Scholar 

  • Navier, C.-L. (1823). Bull. Soc. Philomath, Paris, p. 92 (see Timoshenko, History of strength of materials, p. 121, 1953).

    Google Scholar 

  • Shames, I. H., & Dym, C. L. (1985). Energy and finite element methods in structural mechanics. Hemisphere Publishing.

    Google Scholar 

  • Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl T. Herakovich .

Appendix: Solutions

Appendix: Solutions

  1. 14.7.1

    Show that Eq. (14.7) is correct.

    $$\nabla^{4} w(x,y) \equiv \frac{{\partial^{4} w}}{{\partial x^{4} }} + 2\frac{{\partial^{2} w}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{{\partial^{4} w}}{{\partial y^{4} }} = \frac{q(x,y)}{D}$$

Solution

Substituting Eq. (14.3):

$$\begin{aligned} M_{x} & = - D\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \nu \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) \\ M_{y} & = - D\left( {\frac{{\partial^{2} w}}{{\partial y^{2} }} + \nu \frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) \\ M_{xy} & = - \left( {1 - \nu } \right)D\left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right) \\ \end{aligned}$$

into (14.6)

$$\frac{{\partial^{2} M_{x} }}{{\partial x^{2} }} + 2\frac{{\partial^{2} M_{xy} }}{\partial x\partial y} + \frac{{\partial^{2} M_{y} }}{{\partial y^{2} }} + q(x,y) = 0$$

gives:

$$\begin{aligned} & \frac{{\partial^{2} \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \nu \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right)}}{{\partial x^{2} }} + 2\frac{{\partial^{2} \left( {1 - \nu } \right)\left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right)}}{\partial x\partial y} + \frac{{\partial^{2} \left( {\frac{{\partial^{2} w}}{{\partial y^{2} }} + \nu \frac{{\partial^{2} w}}{{\partial x^{2} }}} \right)}}{{\partial y^{2} }} = \frac{q(x,y)}{D} \\ & \frac{{\partial^{4} w}}{{\partial x^{4} }} + \nu \frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} + 2\left( {1 - \nu } \right)\frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} + \frac{{\partial^{4} w}}{{\partial y^{4} }} + \nu \frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} = \frac{q(x,y)}{D} \\ & \frac{{\partial^{4} w}}{{\partial x^{4} }} + 2\frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} + \frac{{\partial^{4} w}}{{\partial y^{4} }} = \frac{q(x,y)}{D} \equiv \nabla^{4} w \\ \end{aligned}$$
  1. 14.7.2

    Show that Eq. (14.10) gives the unknown constants for a uniformly loaded plate in cylindrical bending.

    $$\begin{aligned} C_{1} & = - \frac{{q_{ \circ } a}}{2D} \\ C_{2} & = 0 \\ C_{3} & = \frac{{q_{ \circ } a^{3} }}{24D} \\ C_{4} & = 0 \\ \end{aligned}$$

Solution

From Eq. (14.9), the general solution is:

$$w(x) = \frac{{q_{ \circ } x^{4} }}{24D} + \frac{{C_{1} x^{3} }}{6} + \frac{{C_{2} x^{2} }}{2} + C_{3} x + C_{4}$$

From Eq.  (14.8), the boundary conditions are:

$$\begin{aligned} & w(0) = w(a) = 0 \\ & M_{x} (0) = M_{x} (a) = 0 \\ \end{aligned}$$

Substitutions give:

$$\begin{aligned} & w(0) = 0\quad \Rightarrow C_{4} = 0 \\ & M_{x} (0) = 0\quad \Rightarrow - D\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) = 0\quad \Rightarrow C_{2} = 0 \\ & M_{x} \left( a \right) = 0\quad \Rightarrow \frac{{\left( {q_{ \circ } a^{2} } \right)}}{2D} + C_{1} a = 0\quad \Rightarrow C_{1} = - \frac{{q_{ \circ } a}}{2D} \\ & w(a) = 0\quad \Rightarrow \frac{{q_{ \circ } a^{4} }}{24D} + \left( { - \frac{{q_{ \circ } a}}{2D}} \right)\frac{{a^{3} }}{6} + C_{3} a = 0\quad \Rightarrow C_{3} = \frac{{q_{ \circ } a^{3} }}{24D} \\ \end{aligned}$$
  1. 14.7.3

    Show that Eq. (14.13) is a solution of Eq. (14.12) for a circular plate under uniform loading.

Recall Eq. (14.12):

$$\frac{1}{r}\frac{d}{dr}\{ r\frac{d}{dr}[\frac{1}{r}\frac{d}{dr}(r\frac{dw}{dr})]\} = \frac{q(r)}{D}$$

and (14.13):

$$w(r) = \frac{{qr^{4} }}{64D} + C_{1} \frac{{r^{2} }}{4} + C_{2} \log \frac{r}{a} + C_{3}$$

Solution

Substitution using the known values of the constants \(C_{2} = C_{4} = 0;\quad C_{1} = \frac{{ - q_{ \circ a} }}{2D};\quad C_{3} = \frac{{q_{ \circ } a^{2} }}{24D}\)

$$\begin{aligned} & \frac{dw}{dr} = \frac{{q_{ \circ } r^{3} }}{16D} + \frac{{C_{1} r}}{2} \\ & \frac{1}{r}\frac{{d\left( {r\left( {\frac{{q_{ \circ } r^{3} }}{16D} + \frac{{C_{1} r}}{2}} \right)} \right)}}{dr} = \frac{1}{r}\frac{{d\left( {\left( {\frac{{q_{ \circ } r^{4} }}{16D} + \frac{{C_{1} r^{2} }}{2}} \right)} \right)}}{dr} = \frac{1}{r}\left( {\left( {\frac{{q_{ \circ } r^{3} }}{4D} + C_{1} r} \right)} \right) \\ & r\frac{{d\left[ {\frac{1}{r}\left( {\frac{{q_{ \circ } r^{3} }}{4D} + C_{1} r} \right)} \right]}}{dr} = r\frac{{d\left( {\left( {\frac{{q_{ \circ } r^{2} }}{4D} + C_{1} } \right)} \right)}}{dr} = \left( {\frac{{q_{ \circ } r^{2} }}{2D}} \right) \\ & \frac{1}{r}\frac{{d\left( {\frac{{q_{ \circ } r^{2} }}{2D}} \right)}}{dr} = \frac{1}{r}\frac{{q_{ \circ } r}}{D} = \frac{{q_{ \circ } }}{D} \\ \end{aligned}$$
  1. 14.7.4

    What is the maximum vertical deflection of the uniformly loaded plate in cylindrical bending (Fig. 14.4)?

Solution

From symmetry, the maximum deflection is at the center \(x = \frac{a}{2}\). The plate deflection equation with known constants is:

$$w(x) = \frac{{q_{ \circ } x^{4} }}{24D} - \frac{{q_{ \circ } ax^{3} }}{12D} + \frac{{q_{ \circ } a^{3} }}{24D}x$$

At \(x = \frac{a}{2}\):

$$\begin{aligned} w(\frac{a}{2}) & = \frac{{q_{ \circ } \left( {\frac{a}{2}} \right)^{4} }}{24D} - \frac{{q_{ \circ } a\left( {\frac{a}{2}} \right)^{3} }}{12D} + \frac{{q_{ \circ } a^{3} }}{24D}\frac{a}{2} \\ w(\frac{a}{2}) & = \frac{{q_{ \circ } a^{4} }}{12D}\left( {\frac{1}{32} - \frac{4}{32} + \frac{8}{32}} \right) = \frac{{q_{ \circ } a^{4} }}{12D}\left( {\frac{5}{32}} \right) = \frac{{5q_{ \circ } a^{4} }}{384D} \\ \end{aligned}$$

Note that for negative \(q_{ \circ }\), the deflection is negative.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herakovich, C.T. (2017). Plates and Shells. In: A Concise Introduction to Elastic Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-45602-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45602-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45601-0

  • Online ISBN: 978-3-319-45602-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics