Skip to main content

On a General Framework for Network Representability in Discrete Optimization

(Extended Abstract)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Abstract

In discrete optimization, representing an objective function as an s-t cut function of a network is a basic technique to design an efficient minimization algorithm. A network representable function can be minimized by computing a minimum s-t cut of a directed network, which is a very easy and fastly solved problem. Hence it is natural to ask what functions are network representable. In the case of pseudo Boolean functions (functions on \(\{0,1\}^n\)), it is known that any submodular function on \(\{0,1\}^3\) is network representable. Živný-Cohen-Jeavons showed by using the theory of expressive power that a certain submodular function on \(\{0,1\}^4\) is not network representable.

In this paper, we introduce a general framework for the network representability of functions on \(D^n\), where D is an arbitrary finite set. We completely characterize network representable functions on \(\{0,1\}^n\) in our new definition. We can apply the expressive power theory to the network representability in the proposed definition. We prove that some ternary bisubmodular function and some binary k-submodular function are not network representable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bach, F.: Learning with submodular functions: A convex optimization perspective. Found. Trends Mach. Learn. 6(2–3), 145–373 (2013)

    Article  MATH  Google Scholar 

  2. Billionnet, A., Minoux, M.: Maximizing a supermodular pseudoboolean function: a polynomial algorithm for supermodular cubic functions. Discrete Appl. Math. 12, 1–11 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., Živný, S.: An algebraic theory of complexity for discrete optimization. SIAM J. Comput. 42(5), 1915–1939 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  5. Greig, G., Porteous, B., Seheult, A.: Exact minimum a posteriori estimation for binary images. J. R. Stat. Soc. Ser. B 51, 271–279 (1989)

    Google Scholar 

  6. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and \(k\)-submodular functions. In: Proceedings of International Conference on Computer Vision (ICCV 2013), pp. 2320–2327 (2013)

    Google Scholar 

  7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  8. Huber, A., Kolmogorov, V.: Towards minimizing k-submodular functions. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 451–462. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Ishii, Y.: On a representation of \(k\)-submodular functions by a skew-symmetric network. Master thesis, The University of Tokyo (2014). (in Japanese)

    Google Scholar 

  10. Ivănescu, P.L.: Some network flow problems solved with pseudo-boolean programming. Oper. Res. 13(3), 388–399 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching and FPT algorithms. SIAM J. Comput. (to appear)

    Google Scholar 

  13. Kolmogorov, V., Thapper, J., Živný, S.: The power of linear programming for general-valued CSPs. SIAM J. Comput. 44(1), 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  MATH  Google Scholar 

  15. Lee, Y.T., Sidford, A., Wong, S.C.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015) (2015). arXiv:1508.04874v2

  16. Orlin, J.B.: Max flows in \({O}(nm)\) time, or better. In: Proceedings of the 45th Annual ACM Symposium on the Theory of Computing (STOC 2013), pp. 765–774 (2013)

    Google Scholar 

  17. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Ser. B 80, 346–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Živný, S.: The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  19. Živný, S., Cohen, D.A., Jeavons, P.G.: The expressive power of binary submodular functions. Discrete Appl. Math. 157(15), 3347–3358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Hiroshi Hirai and Magnus Wahlström for careful reading and numerous helpful comments. This research is supported by JSPS Research Fellowship for Young Scientists and by the JST, ERATO, Kawarabayashi Large Graph Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuni Iwamasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Iwamasa, Y. (2016). On a General Framework for Network Representability in Discrete Optimization. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics