Skip to main content

Strengthening Chvátal-Gomory Cuts for the Stable Set Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Abstract

The stable set problem is a well-known \(\mathcal{NP}\)-hard combinatorial optimization problem. As well as being hard to solve (or even approximate) in theory, it is often hard to solve in practice. The main difficulty is that upper bounds based on linear programming (LP) tend to be weak, whereas upper bounds based on semidefinite programming (SDP) take a long time to compute. We propose a new method to strengthen the LP-based upper bounds. The key idea is to take violated Chvátal-Gomory cuts and then strengthen their right-hand sides. Although the strengthening problem is itself \(\mathcal{NP}\)-hard, it can be solved reasonably quickly in practice. As a result, the overall procedure proves to be capable of yielding competitive upper bounds in reasonable computing times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen, K., Pochet, Y.: Coefficient strengthening: a tool for reformulating mixed-integer programs. Math. Program. 122, 121–154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borndörfer, R.: Aspects of Set Packing, Partitioning and Covering. Doctoral thesis, Technical University of Berlin (1998)

    Google Scholar 

  3. Balas, E., Ceria, S., Cornuéjols, G., Pataki, G.: Polyhedral methods for the maximum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 11–28 (1996)

    Google Scholar 

  4. Bomze, I.M., Frommlet, F., Locatelli, M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Program. 124, 13–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16, 726–750 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. DIMACS repository. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

  7. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discr. Math. 4, 305–337 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corrêa, R.C., Delle Donne, D., Koch, I., Marenco, J.: General cut-generating procedures for the stable set polytope (2015). arXiv:1512.08757v1

  9. Corrêa, R.C., Delle Donne, D., Koch, I., Marenco, J.: A strengthened general cut-generating procedure for the stable set polytope. Elec. Notes Discr. Math. 50, 261–266 (2015)

    Article  Google Scholar 

  10. Coniglio, S., Gualandi, S.: On the exact separation of rank inequalities for the maximum stable set problem. Optimization (2014). http://www.optimization-online.org/DB_HTML/2014/08/4514.html

  11. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. 109, 345–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program. 110, 3–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giandomenico, M., Rossi, F., Smriglio, S.: Strong lift-and-project cutting planes for the stable set problem. Math. Program. 141, 165–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giandomenico, M., Letchford, A., Rossi, F., Smriglio, S.: An application of the Lovász-Schrijver \(M(K, K)\) operator to the stable set problem. Math. Program. 120, 381–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: Approximating the Lovász theta function with the subgradient method. Elec. Notes Discr. Math. 41, 157–164 (2013)

    Article  Google Scholar 

  16. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: Ellipsoidal relaxations of the stable set problem: theory and algorithms. SIAM J. Optim. 25(3), 1944–1963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Amer. Math. Soc. 64, 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  19. Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms in Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  20. Gruber, G., Rendl, F.: Computational experience with stable set relaxations. SIAM J. Optim. 13, 1014–1028 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, Satisfiability: Observation of Strains: The 2nd DIMACS Implementation Challenge. American Mathematical Society, Providence (2011)

    Google Scholar 

  22. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  23. Holm, E., Torres, L.M., Wagler, A.K.: On the Chvátal rank of linear relaxations of the stable set polytope. Int. Trans. Oper. Res. 17, 827–849 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Locatelli, M.: Improving upper bounds for the clique number by non-valid inequalities. Math. Prog. 150, 511–525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theor. 25, 1–7 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lovász, L., Schrijver, A.J.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nemhauser, G.L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 43, 443–457 (1992)

    Article  MATH  Google Scholar 

  28. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rebennack, S., Oswald, M., Theis, D.O., Seitz, H., Reinelt, G., Pardalos, P.M.: A branch and cut solver for the maximum stable set problem. J. Comb. Opt. 21, 434–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rossi, F., Smriglio, S.: A branch-and-cut algorithm for the maximum cardinality stable set problem. Oper. Res. Lett. 28, 63–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Juhász, F.: The asymptotic behaviour of lovász’ \(\theta \) function for random graphs. Combinatorica. 2(2), 153–155 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Smriglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Letchford, A.N., Marzi, F., Rossi, F., Smriglio, S. (2016). Strengthening Chvátal-Gomory Cuts for the Stable Set Problem. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics