Skip to main content

On Vertices and Facets of Combinatorial 2-Level Polytopes

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Included in the following conference series:

  • 1047 Accesses

Abstract

2-level polytopes naturally appear in several areas of mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics.

We investigate upper bounds on the product of the number of facets \(f_{d-1}(P)\) and the number of vertices \(f_0(P)\), where d is the dimension of a 2-level polytope P. This question was first posed in [3], where experimental results showed \(f_0(P)f_{d-1}(P)\le d 2^{d+1}\) up to \(d=6\).

We show that this bound holds for all known (to the best of our knowledge) 2-level polytopes coming from combinatorial settings, including stable set polytopes of perfect graphs and all 2-level base polytopes of matroids. For the latter family, we also give a simple description of the facet-defining inequalities. These results are achieved by an investigation of related combinatorial objects, that could be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barahona, F., Grötschel, M.: On the cycle polytope of a binary matroid. J. Comb. Theory, Ser. B 40(1), 40–62 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bárány, I., Pór, A.: On 0-1 polytopes with many facets. Adv. Math. 161(2), 209–228 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohn, A., Faenza, Y., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K.: Enumeration of 2-level polytopes. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 191–202. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Chaourar, B.: On the kth best base of a matroid. Oper. Res. Lett. 36(2), 239–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser. B 18, 138–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 101. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and bergman fans. Portugaliae Mathematica 62(4), 437–468 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Gouveia, J., Laurent, M., Parrilo, P.A., Thomas, R.: A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs. Math. Program. 133(1–2), 203–225 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grande, F., Rué, J.: Many 2-level polytopes from matroids. Discret. Comput. Geom. 54(4), 954–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grande, F., Sanyal, R.: Theta rank, levelness, and matroid minors (2014). arXiv:1408.1262

  12. Gross, J.L., Yellen, J.: Graph Theory and Its Applications. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  13. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  15. Stanley, R.: Decompositions of rational convex polytopes. Ann. Discret. Math. 6, 333–342 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. Second Ser. 58(3), 433–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43, 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ziegler, G.: Lectures on Polytopes, vol. 152. Springer, Berlin (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Aprile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aprile, M., Cevallos, A., Faenza, Y. (2016). On Vertices and Facets of Combinatorial 2-Level Polytopes. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics