Skip to main content

Infinitely Divisible Processes

  • Chapter
  • First Online:
Stochastic Processes and Long Range Dependence

Abstract

Infinitely divisible stochastic processes form a broad family whose structure is reasonably well understood. A stochastic process \({\bigl (X(t),\,t \in T\bigr )}\) is said to be infinitely divisible if for every n = 1, 2, , there is a stochastic process \(\bigl( Y(t),\, t\in T\bigr)\) such that

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • P. Billingsley, Probability and Measure, 3rd edn. (Wiley, New York, 1995)

    MATH  Google Scholar 

  • S. Cohen, G. Samorodnitsky, Random rewards, Fractional Brownian local times and stable self-similar processes. Ann. Appl. Probab. 16, 1432–1461 (2006)

    MathSciNet  MATH  Google Scholar 

  • L. Decreusefond, A. Üstünel, Stochastic analysis of the Fractional Brownian motion. Potential Anal. 10, 177–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Dombry, N. Guillotin-Plantard, Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15, 195–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Ferguson, M. Klass, A representation theorem of independent increment processes without Gaussian component. Ann. Math. Stat. 43, 1634–1643 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Z. Kabluchko, S. Stoev, Stochastic integral representations and classification of sum- and max-infinitely divisible processes. Bernoulli 22, 107–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Kolmogorov, Wienersche Spiralen und einige andere interessante kurven in Hilbertschen raum. C.R. (Doklady) Acad. Sci. USSR (N.S.) 26, 115–118 (1940)

    Google Scholar 

  • S. Kwapień, W. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple (Birkhäuser, Boston, 1992)

    Book  MATH  Google Scholar 

  • R. LePage, M. Woodroofe, J. Zinn, Convergence of a stable distribution via order statistics. Ann. Prob. 9, 624–632 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Mandelbrot, J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Rajput, J. Rosiński, Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–488 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Rosiński, On series representation of infinitely divisible random vectors. Ann. Probab. 18, 405–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Rosiński, On the structure of stationary stable processes. Ann. Probab. 23, 1163–1187 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Rosiński, Lévy and Related Jump-type Infinitely Divisible Processes. Lecture Notes, Cornell University (2007)

    Google Scholar 

  • J. Rosiński, G. Samorodnitsky, Infinitely Divisible Stochastic Processes (2016). In preparation

    Google Scholar 

  • J. Rosiński, T. Żak, The equivalence of ergodicity and weak mixing for infinitely divisible processes. J. Theor. Probab. 10, 73–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • E. Roy, Ergodic properties of Poissonian ID processes. Ann. Probab. 35, 551–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Samorodnitsky, Null flows, positive flows and the structure of stationary symmetric stable processes. Ann. Probab. 33, 1782–1803 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes (Chapman and Hall, New York, 1994)

    MATH  Google Scholar 

  • K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  • W. Vervaat, On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Probab. 11, 750–783 (1979)

    MathSciNet  MATH  Google Scholar 

  • A. Yaglom, Correlation theory of processes with stationary random increments of order n. Mat. Sb. 37, 141–196 (1955); English translation in Am. Math. Soc. Translations Ser. 2 8, 87–141 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samorodnitsky, G. (2016). Infinitely Divisible Processes. In: Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45575-4_3

Download citation

Publish with us

Policies and ethics