Skip to main content

Pathways Across the Blood-Brain Barrier

  • Chapter
  • First Online:

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The parenchymal blood-brain barrier (BBB) is formed by highly specialized vascular endothelial cells of the central nervous system (CNS). As part of the neurovascular unit (NVU), the BBB builds up a tight barrier between the changing milieu of the bloodstream and the vulnerable CNS. Yet, during inflammatory diseases of the CNS, immune cells are recruited into the CNS and thus migrate across the inflamed BBB. In particular, effector T (Teff) cells critically contribute to autoimmune neuroinflammation such as multiple sclerosis (MS). Extravasation of Teff cells across the inflamed BBB is a well-coordinated multistep process tightly regulated through cell adhesion molecules, chemotactic factors, and their receptors. An initial contact between the circulating Teff cell and the inflamed endothelial cells of the BBB mediates slowing down of Teff cells. Then, integrins on the Teff cell surface acquire an activated conformation. This in turn is prerequisite for shear-resistant arrest that transforms into firm adhesion, crawling, and finally diapedesis. Following diapedesis, Teff cells accumulate in the perivascular space between the two basement membranes of the NVU. Only after reactivation with their cognate antigen by antigen-presenting cells (APCs), Teff cells can breach the parenchymal basement membrane and infiltrate the CNS parenchyma. Interfering with pathological Teff cell recruitment into the CNS has been successfully translated into the clinic for the treatment of MS patients through natalizumab, which blocks extravasation of immune cells across the BBB. This review introduces the molecular players and discusses the cellular pathway of Teff cell extravasation across the inflamed BBB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, Deutsch U, Engelhardt B, Lyck R (2015) Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood–brain barrier. Eur J Immunol 45(4):1043–1058. doi:10.1002/eji.201445125

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36(3):437–449. doi:10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  3. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  4. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev 7(1):41–53

    Article  CAS  Google Scholar 

  5. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756. doi:10.1038/nri1184

    Article  CAS  PubMed  Google Scholar 

  6. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665. doi:10.1182/blood-2011-04-325225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Allingham MJ, van Buul JD, Burridge K (2007) ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol 179(6):4053–4064

    Article  CAS  PubMed  Google Scholar 

  8. Alt C, Laschinger M, Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32(8):2133–2144

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez JI, Kebir H, Cheslow L, Chabarati M, Larochelle C, Prat A (2015) JAML mediates monocyte and CD8 T cell migration across the brain endothelium. Ann Clin Transl Neurol 2(11):1032–1037. doi:10.1002/acn3.255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197–263

    CAS  PubMed  Google Scholar 

  11. Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R (2015) Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front Immunol 6:492. doi:10.3389/fimmu.2015.00492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Austrup F, Vestweber D, Borges E, Löhning M, Bräuer R, Herz U, Renz H, Hallman R, Scheffold A, Radbruch A, Hamann A (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385:81–83

    Article  CAS  PubMed  Google Scholar 

  13. Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R, Rot A, Sozzani S, Thelen M (2015) An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br J Pharmacol 172(16):3945–3949. doi:10.1111/bph.13182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol 71(11):1018–1039. doi:10.1002/dneu.20954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250(2):91–104

    Article  CAS  PubMed  Google Scholar 

  16. Bamforth SD, Lightman SL, Greenwood J (1997) Ultrastructural analysis of interleukin-1 beta-induced leukocyte recruitment to the rat retina. Invest Ophthalmol Vis Sci 38(1):25–35

    CAS  PubMed  Google Scholar 

  17. Banks WA (2015) The blood–brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun 44:1–8. doi:10.1016/j.bbi.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  18. Barclay AN (2003) Membrane proteins with immunoglobulin-like domains–a master superfamily of interaction molecules. Semin Immunol 15(4):215–223

    Article  CAS  PubMed  Google Scholar 

  19. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157(7):1233–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98

    Article  PubMed  CAS  Google Scholar 

  21. Battistini L, Piccio L, Rossi B, Bach S, Galgani S, Gasperini C, Ottoboni L, Ciabini D, Caramia MD, Bernardi G, Laudanna C, Scarpini E, McEver RP, Butcher EC, Borsellino G, Constantin G (2003) CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood 101(12):4775–4782. doi:10.1182/blood-2002-10-3309

    Article  CAS  PubMed  Google Scholar 

  22. Bauer M, Brakebusch C, Coisne C, Sixt M, Wekerle H, Engelhardt B, Fassler R (2009) Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci U S A 106(6):1920–1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bittner S, Wiendl H (2016) Neuroimmunotherapies targeting T cells: from pathophysiology to therapeutic applications. Neurotherapeutics 13(1):4–19. doi:10.1007/s13311-015-0405-3

    Article  CAS  PubMed  Google Scholar 

  24. Borges E, Tietz W, Steegmaier M, Moll T, Hallmann R, Hamann A, Vestweber D (1997) P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J Exp Med 185:573–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181(6):2213–2220

    Article  CAS  PubMed  Google Scholar 

  26. Buckwalter MS, Coleman BS, Buttini M, Barbour R, Schenk D, Games D, Seubert P, Wyss-Coray T (2006) Increased T cell recruitment to the CNS after amyloid beta 1–42 immunization in Alzheimer’s mice overproducing transforming growth factor-beta 1. J Neurosci 26(44):11437–11441. doi:10.1523/JNEUROSCI.2436-06.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bullard DC, Hu X, Crawford D, McDonald K, Ramos TN, Barnum SR (2014) Expression of a single ICAM-1 isoform on T cells is sufficient for development of experimental autoimmune encephalomyelitis. Eur J Immunol 44(4):1194–1199. doi:10.1002/eji.201344023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bullard DC, Hu X, Schoeb TR, Collins RG, Beaudet AL, Barnum SR (2007) Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 178(2):851–857

    Article  CAS  PubMed  Google Scholar 

  29. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3). doi:10.1101/cshperspect.a004994

  30. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 7:2068–2101

    Google Scholar 

  31. Carman CV (2009) Mechanisms for transcellular diapedesis: probing and pathfinding by ’invadosome-like protrusions’. J Cell Sci 122(Pt 17):3025–3035

    Article  CAS  PubMed  Google Scholar 

  32. Carman CV, Jun CD, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J Immunol 171(11):6135–6144

    Article  CAS  PubMed  Google Scholar 

  33. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26(6):784–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167(2):377–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9(2):137–145

    Article  CAS  PubMed  Google Scholar 

  36. Chai Q, He WQ, Zhou M, Lu H, Fu ZF (2014) Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88(9):4698–4710. doi:10.1128/JVI.03149-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621. doi:10.1056/NEJMra052723

    Article  CAS  PubMed  Google Scholar 

  38. Ciurleo R, Bramanti P, Marino S (2014) Role of statins in the treatment of multiple sclerosis. Pharmacol Res 87:133–143. doi:10.1016/j.phrs.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  39. Coisne C, Lyck R, Engelhardt B (2007) Therapeutic targeting of leukocyte trafficking across the blood–brain barrier. Inflamm Allergy Drug Targets 6(4):210–222

    Article  CAS  PubMed  Google Scholar 

  40. Coisne C, Mao W, Engelhardt B (2009) Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood–brain barrier in vivo in an animal model of multiple sclerosis. J Immunol 182(10):5909–5913

    Article  CAS  PubMed  Google Scholar 

  41. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F (2003) Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 13(1):38–51

    Article  PubMed  Google Scholar 

  42. Cook-Mills JM, Marchese ME, Abdala-Valencia H (2011) Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxidants & redox signaling 15(6):1607–1638. doi:10.1089/ars.2010.3522

  43. Critchley DR, Gingras AR (2008) Talin at a glance. J Cell Sci 121(Pt 9):1345–1347. doi:10.1242/jcs.018085

    Article  CAS  PubMed  Google Scholar 

  44. Crook MF, Southgate KM, Newby AC (2002) Both ICAM-1- and VCAM-1-integrin interactions are important in mediating monocyte adhesion to human saphenous vein. J Vasc Res 39(3):221–229. doi:63687

    Google Scholar 

  45. Deem TL, Cook-Mills JM (2004) Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104(8):2385–2393. doi:10.1182/blood-2004-02-0665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23(8):879–894. doi:10.1097/01.WCB.0000078322.96027.78

    Article  PubMed  Google Scholar 

  47. Diamond MS, Staunton DE, Marlin SD, Springer TA (1991) Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65(6):961–971

    Article  CAS  PubMed  Google Scholar 

  48. Didier N, Romero IA, Creminon C, Wijkhuisen A, Grassi J, Mabondzo A (2003) Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem 86(1):246–254

    Article  CAS  PubMed  Google Scholar 

  49. Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 179(12):8470–8479

    Article  PubMed  Google Scholar 

  50. Engelhardt B (1998) The role of alpha 4-integrin in T lymphocyte migration into the inflamed and noninflamed central nervous system. Curr Top Microbiol Immunol 231:51–64

    CAS  PubMed  Google Scholar 

  51. Engelhardt B (2010) T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 1(2):79–93. doi:10.1111/j.1759-1961.2010.009.x

    Article  CAS  Google Scholar 

  52. Engelhardt B, Kappos L (2008) Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis 5(1):16–22. doi:10.1159/000109933

    Article  CAS  PubMed  Google Scholar 

  53. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33(12):579–589. doi:10.1016/j.it.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  54. Engelhardt B, Sorokin L (2009) The blood–brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31(4):497–511. doi:10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  55. Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, Hogg N (2009) Integrins in immunity. J Cell Sci 122(Pt 2):215–225. doi:10.1242/jcs.019117

    Article  CAS  PubMed  Google Scholar 

  56. Faulkner M (2015) Risk of progressive multifocal leukoencephalopathy in patients with multiple sclerosis. Expert Opin Drug Saf 14(11):1737–1748. doi:10.1517/14740338.2015.1093620

    Article  CAS  PubMed  Google Scholar 

  57. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192(6):899–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fife BT, Kennedy KJ, Paniagua MC, Lukacs NW, Kunkel SL, Luster AD, Karpus WJ (2001) CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 166(12):7617–7624

    Article  CAS  PubMed  Google Scholar 

  59. Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Vandevert C, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock T (2012) Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One 7(7):e40443. doi:10.1371/journal.pone.0040443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gingras AR, Vogel KP, Steinhoff HJ, Ziegler WH, Patel B, Emsley J, Critchley DR, Roberts GC, Barsukov IL (2006) Structural and dynamic characterization of a vinculin binding site in the talin rod. Biochemistry 45(6):1805–1817. doi:10.1021/bi052136l

    Article  CAS  PubMed  Google Scholar 

  61. Gotsch U, Borges E, Bosse R, Böggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110:583–588

    CAS  PubMed  Google Scholar 

  62. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Review: leucocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37(1):24–39. doi:10.1111/j.1365-2990.2010.01140.x

    Article  CAS  PubMed  Google Scholar 

  63. Greenwood J, Howes R, Lightman S (1994) The blood-retinal barrier in experimental autoimmune uveoretinitis – leukocyte interactions and functional damage. Lab Invest 70(N1):39–52

    CAS  PubMed  Google Scholar 

  64. Guyon A (2014) CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles. Front Cell Neurosci 5:115. doi:10.3389/fncel.2014.00115

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hagman S, Raunio M, Rossi M, Dastidar P, Elovaara I (2011) Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: prospective clinical and MRI follow-up study. J Neuroimmunol 234(1–2):141–147. doi:10.1016/j.jneuroim.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  66. Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158(4):1825–1832

    CAS  PubMed  Google Scholar 

  67. Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11(2):125–137

    Article  CAS  PubMed  Google Scholar 

  68. Hirata T, Merrill-Skoloff G, Aab M, Yang J, Furie BC, Furie B (2000) P-Selectin glycoprotein ligand 1 (PSGL-1) is a physiological ligand for E-selectin in mediating T helper 1 lymphocyte migration. J Exp Med 192(11):1669–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170(2):607–612

    Article  CAS  PubMed  Google Scholar 

  70. Holman DW, Klein RS, Ransohoff RM (2011) The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812(2):220–230. doi:10.1016/j.bbadis.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  71. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193(6):713–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, Nourshargh S (2006) ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood 107:4721–4727

    Article  CAS  PubMed  Google Scholar 

  73. Huber JD, Witt KA, Hom S, Egleton RD, Mark KS, Davis TP (2001) Inflammatory pain alters blood–brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 280(3):H1241–H1248

    CAS  PubMed  Google Scholar 

  74. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, Gendron S, Bourbonniere L, Dunay IR, Bouthillier A, Moumdjian R, Fontana A, Haqqani A, Klopstein A, Prinz M, Lopez-Vales R, Birchler T, Prat A (2011) Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 70(5):751–763. doi:10.1002/ana.22519

    Article  CAS  PubMed  Google Scholar 

  75. Imeri F, Schwalm S, Lyck R, Zivkovic A, Stark H, Engelhardt B, Pfeilschifter J, Huwiler A (2016) Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: resistance to FTY720 but not ST-968 treatments. Neuropharmacology 105:341–350. doi:10.1016/j.neuropharm.2016.01.031

    Article  CAS  PubMed  Google Scholar 

  76. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192(7):1075–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Karakose E, Schiller HB, Fassler R (2010) The kindlins at a glance. J Cell Sci 123(Pt 14):2353–2356. doi:10.1242/jcs.064600

    Article  PubMed  CAS  Google Scholar 

  78. Kerfoot S, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006

    Article  CAS  PubMed  Google Scholar 

  79. Kerfoot SM, Norman MU, Lapointe BM, Bonder CS, Zbytnuik L, Kubes P (2006) Reevaluation of P-selectin and alpha 4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis. J Immunol 176:6225–6234

    Article  CAS  PubMed  Google Scholar 

  80. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, Hofbauer M, Farina C, Derfuss T, Hartle C, Newcombe J, Hohlfeld R, Meinl E (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129(Pt 1):200–211

    PubMed  Google Scholar 

  81. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buc C, Buch CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503

    CAS  PubMed  Google Scholar 

  82. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357. doi:10.1038/nrd2518

    Article  PubMed  CAS  Google Scholar 

  83. Lai-Cheong JE, Parsons M, McGrath JA (2010) The role of kindlins in cell biology and relevance to human disease. Int J Biochem Cell Biol 42(5):595–603. doi:10.1016/j.biocel.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  84. Lalor PF, Edwards S, McNab G, Salmi M, Jalkanen S, Adams DH (2002) Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J Immunol 169(2):983–992

    Article  CAS  PubMed  Google Scholar 

  85. Lalor SJ, Segal BM (2010) Lymphoid chemokines in the CNS. J Neuroimmunol 224(1–2):56–61. doi:10.1016/j.jneuroim.2010.05.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lecuyer MA, Ifergan I, Viel E, Bourbonniere L, Beauseigle D, Terouz S, Hachehouche L, Gendron S, Poirier J, Jobin C, Duquette P, Flanagan K, Yednock T, Arbour N, Prat A (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135(Pt 10):2906–2924. doi:10.1093/brain/aws212

    Article  PubMed  Google Scholar 

  87. Larochelle C, Lecuyer MA, Alvarez JI, Charabati M, Saint-Laurent O, Ghannam S, Kebir H, Flanagan K, Yednock T, Duquette P, Arbour N, Prat A (2015) Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 78(1):39–53. doi:10.1002/ana.24415

    Article  CAS  PubMed  Google Scholar 

  88. Laschinger M, Engelhardt B (2000) Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102(1):32–43

    Article  CAS  PubMed  Google Scholar 

  89. Lee SJ, Benveniste EN (1999) Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol 98:77–88

    Article  CAS  PubMed  Google Scholar 

  90. Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ, Critchley DR, Ginsberg MH, Fassler R, Ley K (2012) Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119(18):4275–4282. doi:10.1182/blood-2011-08-373118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9(6):263–268

    Article  CAS  PubMed  Google Scholar 

  92. Ley K, Kansas GS (2004) Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat Rev Immunol 4(5):325–335

    Article  CAS  PubMed  Google Scholar 

  93. Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH (2010) Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 31(2):175–188. doi:10.1016/j.neurobiolaging.2008.03.024

    Article  CAS  PubMed  Google Scholar 

  94. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

  95. Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE (2016) Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 1862(3):461–471. doi:10.1016/j.bbadis.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  96. Lossinsky AS, Badmajew V, Robson JA, Moretz RC, Wisniewski HM (1989) Sites of egress of inflammatory cells and horseradish peroxidase transport across the blood–brain barrier in a murine model of chronic relapsing experimental allergic encephalomyelitis. Acta Neuropathol 78(4):359–371

    Article  CAS  PubMed  Google Scholar 

  97. Lossinsky AS, Pluta R, Song MJ, Badmajew V, Moretz RC, Wisniewski HM (1991) Mechanisms of inflammatory cell attachment in chronic relapsing experimental allergic encephalomyelitis: a scanning and high-voltage electron microscopic study of the injured mouse blood–brain barrier. Microvasc Res 41(3):299–310

    Article  CAS  PubMed  Google Scholar 

  98. Lowe JB (2002) Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev 186:19–36

    Article  CAS  PubMed  Google Scholar 

  99. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Lyck R, Engelhardt B (2012) Going against the tide--how encephalitogenic T cells breach the blood–brain barrier. J Vasc Res 49(6):497–509. doi:10.1159/000341232

    Article  PubMed  Google Scholar 

  101. Lyck R, Enzmann G (2015) The physiological roles of ICAM-1 and ICAM-2 in neutrophil migration into tissues. Curr Opin Hematol 22(1):53–59. doi:10.1097/MOH.0000000000000103

    Article  CAS  PubMed  Google Scholar 

  102. Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102(10):3675–3683. doi:10.1182/blood-2003-02-0358

    Article  CAS  PubMed  Google Scholar 

  103. Makgoba MW, Sanders ME, Ginther Luce GE, Dustin ML, Springer TA, Clark EA, Mannoni P, Shaw S (1988) ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 331(6151):86–88. doi:10.1038/331086a0

    Article  CAS  PubMed  Google Scholar 

  104. Malfitano AM, Marasco G, Proto MC, Laezza C, Gazzerro P, Bifulco M (2014) Statins in neurological disorders: an overview and update. Pharmacol Res 88:74–83. doi:10.1016/j.phrs.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  105. Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH (2007) Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28(4):485–496. doi:10.1016/j.neurobiolaging.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  106. Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J (2009) ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell 20(3):995–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Martinelli R, Kamei M, Sage PT, Massol R, Varghese L, Sciuto T, Toporsian M, Dvorak AM, Kirchhausen T, Springer TA, Carman CV (2013) Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 201(3):449–465. doi:10.1083/jcb.201209077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Martinelli R, Zeiger AS, Whitfield M, Sciuto TE, Dvorak A, Van Vliet KJ, Greenwood J, Carman CV (2014) Probing the biomechanical contribution of the endothelium to lymphocyte migration: diapedesis by the path of least resistance. J Cell Sci 127(Pt 17):3720–3734. doi:10.1242/jcs.148619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, Hill HR (2011) Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol 136(5):696–704. doi:10.1309/AJCP7UBK8IBVMVNR

    Article  CAS  PubMed  Google Scholar 

  110. Matsuki T, Nakae S, Sudo K, Horai R, Iwakura Y (2006) Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol 18(2):399–407. doi:10.1093/intimm/dxh379

    Article  CAS  PubMed  Google Scholar 

  111. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, Klein RS (2008) Pathological expression of CXCL12 at the blood–brain barrier correlates with severity of multiple sclerosis. Am J Pathol 172(3):799–808. doi:10.2353/ajpath.2008.070918

    Article  PubMed Central  PubMed  Google Scholar 

  112. McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177(11):8053–8064

    Article  CAS  PubMed  Google Scholar 

  113. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. doi:10.1186/1742-2094-5-45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. McEver RP, Zhu C (2010) Rolling cell adhesion. Annu Rev Cell Dev Biol 26:363–396. doi:10.1146/annurev.cellbio.042308.113238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33(5):371–378

    Article  CAS  PubMed  Google Scholar 

  116. Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 197(2):275–283. doi:10.1016/j.expneurol.2005.10.034

    Article  CAS  PubMed  Google Scholar 

  117. Moretti FA, Moser M, Lyck R, Abadier M, Ruppert R, Engelhardt B, Fassler R (2013) Kindlin-3 regulates integrin activation and adhesion reinforcement of effector T cells. Proc Natl Acad Sci U S A 110(42):17005–17010. doi:10.1073/pnas.1316032110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Moser M, Legate KR, Zent R, Fassler R (2009) The tail of integrins, talin, and kindlins. Science (New York NY) 324(5929):895–899. doi:10.1126/science.1163865

    Article  CAS  Google Scholar 

  119. Nicoletti F, Patti F, Cocuzza C, Zaccone P, Nicoletti A, Di Marco R, Reggio A (1996) Elevated serum levels of interleukin-12 in chronic progressive multiple sclerosis. J Neuroimmunol 70(1):87–90

    Article  CAS  PubMed  Google Scholar 

  120. Nourshargh S, Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41(5):694–707. doi:10.1016/j.immuni.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  121. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9(1):60–71. doi:10.1038/nrm2299

    Article  CAS  PubMed  Google Scholar 

  122. Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R (2015) Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front Immunol 6:539. doi:10.3389/fimmu.2015.00539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163:553–557

    CAS  PubMed  Google Scholar 

  124. Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM (2015) Vascular adhesion protein-1: role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 52(6):284–300. doi:10.3109/10408363.2015.1050714

    Article  CAS  PubMed  Google Scholar 

  125. Pfeiffer F, Schafer J, Lyck R, Makrides V, Brunner S, Schaeren-Wiemers N, Deutsch U, Engelhardt B (2011) Claudin-1 induced sealing of blood–brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol 122(5):601–614. doi:10.1007/s00401-011-0883-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168(4):1940–1949

    Article  CAS  PubMed  Google Scholar 

  127. Planas AM, Gorina R, Chamorro A (2006) Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 34(Pt 6):1267–1270. doi:10.1042/BST0341267

    Article  CAS  PubMed  Google Scholar 

  128. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN, Kosco-Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A 100(4):1885–1890. doi:10.1073/pnas.0334864100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Quandt J, Dorovini-Zis K (2004) The beta chemokines CCL4 and CCL5 enhance adhesion of specific CD4+ T cell subsets to human brain endothelial cells. J Neuropathol Exp Neurol 63(4):350–362

    Article  CAS  PubMed  Google Scholar 

  130. Ramos TN, Bullard DC, Barnum SR (2014) ICAM-1: isoforms and phenotypes. J Immunol 192(10):4469–4474. doi:10.4049/jimmunol.1400135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359. doi:10.1007/s00424-007-0212-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B (2016) Post-arrest stalling rather than crawling favors CD8+ over CD4+ T-cell migration across the blood–brain barrier under flow in vitro. Eur J Immunol 46:2187–2203. doi:10.1002/eji.201546251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Sa-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45(2):327–347. doi:10.1007/s12035-012-8244-2

    Article  CAS  PubMed  Google Scholar 

  134. Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B (2014) PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol 44(8):2287–2294. doi:10.1002/eji.201344214

    Article  CAS  PubMed  Google Scholar 

  135. Schiffenbauer J, Streit WJ, Butfiloski E, LaBow M, Edwards C 3rd, Moldawer LL (2000) The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin Immunol 95(2):117–123. doi:10.1006/clim.2000.4851

    Article  CAS  PubMed  Google Scholar 

  136. Schulte D, Kuppers V, Dartsch N, Broermann A, Li H, Zarbock A, Kamenyeva O, Kiefer F, Khandoga A, Massberg S, Vestweber D (2011) Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. Embo J 30(20):4157–4170. doi:10.1038/emboj.2011.304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Selmaj KW, Raine CS (1995) Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology 45(6 Suppl 6):S44–S49

    Article  CAS  PubMed  Google Scholar 

  138. Sharief MK, Hentges R, Thomas E (1991) Significance of CSF immunoglobulins in monitoring neurologic disease activity in Behcet’s disease. Neurology 41(9):1398–1401

    Article  CAS  PubMed  Google Scholar 

  139. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11(4):288–300. doi:10.1038/nrm2871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Shulman Z, Alon R (2012) Real-time analysis of integrin-dependent transendothelial migration and integrin-independent interstitial motility of leukocytes. Methods Mol Biol 757:31–45. doi:10.1007/978-1-61779-166-6_3

    Article  PubMed  CAS  Google Scholar 

  141. Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R, Grabovsky V, Klein E, Shinder V, Stoler-Barak L, Feigelson SW, Meshel T, Nurmi SM, Goldstein I, Hartley O, Gahmberg CG, Etzioni A, Weninger W, Ben-Baruch A, Alon R (2012) Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol 13(1):67–76. doi:10.1038/ni.2173

    Article  CAS  Google Scholar 

  142. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89–102. doi:10.1038/nri2691

    Article  CAS  PubMed  Google Scholar 

  143. Smith A, Stanley P, Jones K, Svensson L, McDowall A, Hogg N (2007) The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev 218:135–146

    Article  CAS  PubMed  Google Scholar 

  144. Sobel RA, Mitchell ME, Fondren G (1990) Intercellular Adhesion Molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136:1309–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Song KH, Kwon KW, Choi JC, Jung J, Park Y, Suh KY, Doh J (2014) T cells sense biophysical cues using lamellipodia and filopodia to optimize intraluminal path finding. Integr Biol (Camb) 6(4):450–459. doi:10.1039/c4ib00021h

    Article  CAS  Google Scholar 

  146. Steffen BJ, Butcher EC, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145(1):189–201

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R (2010) Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood–brain barrier endothelium. J Immunol 185(8):4846–4855. doi:10.4049/jimmunol.0903732

    Article  CAS  PubMed  Google Scholar 

  148. Steiner O, Coisne C, Engelhardt B, Lyck R (2011) Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood–brain barrier models for the study of T cell extravasation. J Cereb Blood Flow Metab 31(1):315–327. doi:10.1038/jcbfm.2010.96

    Article  CAS  PubMed  Google Scholar 

  149. Stoler-Barak L, Moussion C, Shezen E, Hatzav M, Sixt M, Alon R (2014) Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects. PLoS One 9(1):e85699. doi:10.1371/journal.pone.0085699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691. doi:10.1084/jem.20060285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science (New York NY) 302(5642):103–106. doi:10.1126/science.1086652

    Article  CAS  Google Scholar 

  152. Talamonti M, Spallone G, Di Stefani A, Costanzo A, Chimenti S (2011) Efalizumab. Expert Opin Drug Saf 10(2):239–251. doi:10.1517/14740338.2011.524925

  153. Te Riet J, Helenius J, Strohmeyer N, Cambi A, Figdor CG, Muller DJ (2014) Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6. J Cell Sci 127(Pt 7):1595–1606. doi:10.1242/jcs.141077

    Article  CAS  Google Scholar 

  154. Thelen M, Stein JV (2008) How chemokines invite leukocytes to dance. Nat Immunol 9(9):953–959. doi:10.1038/ni.f.207

    Article  CAS  PubMed  Google Scholar 

  155. Thompson PW, Randi AM, Ridley AJ (2002) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J Immunol 169:1007–1013

    Article  CAS  PubMed  Google Scholar 

  156. Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209(4):493–506. doi:10.1083/jcb.201412147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39(4–5):173–185

    Article  CAS  PubMed  Google Scholar 

  158. Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

  159. Town T, Tan J, Flavell RA, Mullan M (2005) T-cells in Alzheimer’s disease. Neuromolecular Med 7(3):255–264. doi:10.1385/NMM:7:3:255

    Article  CAS  PubMed  Google Scholar 

  160. Traugott U, Lebon P (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 24(2):243–251. doi:10.1002/ana.410240211

    Article  CAS  PubMed  Google Scholar 

  161. Trenova AG, Manova MG, Kostadinova II, Murdjeva MA, Hristova DR, Vasileva TV, Zahariev ZI (2011) Clinical and laboratory study of pro-inflammatory and antiinflammatory cytokines in women with multiple sclerosis. Folia Med (Plovdiv) 53(2):29–35

    Google Scholar 

  162. Tsai HC, Han MH (2016) Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs 76:1067–1079. doi:10.1007/s40265-016-0603-2

    Article  PubMed  CAS  Google Scholar 

  163. Vacchini A, Locati M, Borroni EM (2016) Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 99(6):883–892. doi:10.1189/jlb.2MR1015-477R

    Article  CAS  PubMed  Google Scholar 

  164. Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108(4):557–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Valignat MP, Theodoly O, Gucciardi A, Hogg N, Lellouch AC (2013) T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J 104(2):322–331. doi:10.1016/j.bpj.2012.12.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R, Burridge K (2007) RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 178(7):1279–1293. doi:10.1083/jcb.200612053

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  167. van Buul JD, Kanters E, Hordijk PL (2007) Endothelial signaling by Ig-like cell adhesion molecules. Arterioscler Thromb Vasc Biol 27(9):1870–1876. doi:10.1161/ATVBAHA.107.145821

    Article  PubMed  CAS  Google Scholar 

  168. Vestweber D, Wessel F, Nottebaum AF (2014) Similarities and differences in the regulation of leukocyte extravasation and vascular permeability. Semin Immunopathol 36(2):177–192. doi:10.1007/s00281-014-0419-7

    Article  CAS  PubMed  Google Scholar 

  169. Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007) Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26(7):1067–1077. doi:10.1038/sj.onc.1209855

    Article  CAS  PubMed  Google Scholar 

  170. Watts AO, Verkaar F, van der Lee MM, Timmerman CA, Kuijer M, van Offenbeek J, van Lith LH, Smit MJ, Leurs R, Zaman GJ, Vischer HF (2013) beta-Arrestin recruitment and G protein signaling by the atypical human chemokine decoy receptor CCX-CKR. J Biol Chem 288(10):7169–7181. doi:10.1074/jbc.M112.406108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857. doi:10.1016/j.bbamem.2008.10.022

    Article  CAS  PubMed  Google Scholar 

  172. Wen SR, Liu GJ, Feng RN, Gong FC, Zhong H, Duan SR, Bi S (2012) Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 244(1–2):94–96. doi:10.1016/j.jneuroim.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  173. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, Linnepe R, Ipe U, Stadtmann A, Zarbock A, Nottebaum AF, Vestweber D (2014) Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 15(3):223–230. doi:10.1038/ni.2824

    Article  CAS  PubMed  Google Scholar 

  174. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109(2):181–190

    Article  Google Scholar 

  175. Wong RK, Baldwin AL, Heimark RL (1999) Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 276(2 Pt 2):H736–H748

    CAS  PubMed  Google Scholar 

  176. Xie H, Lim YC, Luscinskas FW, Lichtman AH (1999) Acquisition of selectin binding and peripheral homing properties by CD4(+) and CD8(+) T cells. J Exp Med 189(11):1765–1776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Yang L, Kowalski JR, Yacono P, Bajmoczi M, Shaw SK, Froio RM, Golan DE, Thomas SM, Luscinskas FW (2006) Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J Immunol 177(9):6440–6449

    Article  CAS  PubMed  Google Scholar 

  178. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356(6364):63–66

    Article  CAS  PubMed  Google Scholar 

  179. Zimmerman AW, Joosten B, Torensma R, Parnes JR, van Leeuwen FN, Figdor CG (2006) Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 107(8):3212–3220. doi:10.1182/blood-2005-09-3881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thankfully acknowledge financial support by the Swiss Multiple Sclerosis Society, Zürich, Switzerland, and the Foundation for Clinical and Experimental Cancer Research, Bern, Switzerland, to RL. MA was supported by Swiss National Science Foundation Early Postdoc Mobility Fellowship. We are grateful to Gaby Enzmann for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Lyck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abadier, M., Lyck, R. (2017). Pathways Across the Blood-Brain Barrier. In: Lyck, R., Enzmann, G. (eds) The Blood Brain Barrier and Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45514-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45514-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45512-9

  • Online ISBN: 978-3-319-45514-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics