Skip to main content

Leakage at Blood-Neural Barriers

  • Chapter
  • First Online:
The Blood Brain Barrier and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Permeability of blood vessels in the brain and retina is usually very low and dominated by the restricting properties of the blood-brain and blood-retinal barriers, respectively. The highly specialised endothelium pervading the brain and the retina displays low permeability due to the nearly complete absence of transcellular transport (with the exception of that of specific nutrients and metabolites) and also to highly differentiated tight junctions. Importantly, the neuroglial cells that are part of cerebral and retinal blood vessels appear to be the main driver for inducing and maintaining these specialised properties of the endothelium. During many traumatic, inflammatory or degenerative neuro- and retinopathologies, this neurovascular unit is compromised leading to reduced vascular endothelial barrier properties and detrimental leakage of blood components into nervous tissue. Importantly, many extracellular permeability-inducing factors such as histamines, kinins, growth factors and lipids can trigger endothelial leakage in varying ways, but in most cases, pathological leakage occurs through consecutive or parallel opening of the paracellular space (characterised by tight junction protein loss) and induction of transcellular vesicles (possibly caveolae). Both pathways are regulated by complex often overlapping protein phosphorylation and GTPase networks, which lends credence to efforts to limit leakage at the BBB and BRB by specific signalling antagonists. Finally, leakage pathways are also exploited to facilitate drug delivery to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez JI, Cayrol R, Prat A (2011) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812:252–264

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M et al (2011) The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–1731

    Article  CAS  PubMed  Google Scholar 

  4. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  6. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  7. Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M, Guilbert T, Liebner S, Couraud PO (2014) The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 34:433–440

    Article  CAS  PubMed  Google Scholar 

  8. Bai Y, Zhu X, Chao J, Zhang Y, Qian C, Li P, Liu D, Han B, Zhao L, Zhang J et al (2015) Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 10:e0124362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bamforth SD, Lightman SL, Greenwood J (1997) Ultrastructural analysis of interleukin-1 beta-induced leukocyte recruitment to the rat retina. Invest Ophthalmol Vis Sci 38:25–35

    CAS  PubMed  Google Scholar 

  10. Barber AJ, Antonetti DA (2003) Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 44:5410–5416

    Article  PubMed  Google Scholar 

  11. Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, Shihadeh V, Ulufatu S, Foreman O, Lu Y et al (2015) Lack of Widespread BBB Disruption in Alzheimer’s Disease Models: Focus on Therapeutic Antibodies. Neuron 88:289–297

    Article  CAS  PubMed  Google Scholar 

  14. Bouchard P, Ghitescu LD, Bendayan M (2002) Morpho-functional studies of the blood-brain barrier in streptozotocin-induced diabetic rats. Diabetologia 45:1017–1025

    Article  CAS  PubMed  Google Scholar 

  15. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood-brain barrier 4–500 million years ago. Glia 56:699–708

    Article  PubMed  Google Scholar 

  18. Burgess A, Shah K, Hough O, Hynynen K (2015) Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 15:477–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW et al (2012) Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 3:849

    Article  PubMed  CAS  Google Scholar 

  20. Campbell M, Kiang AS, Kenna PF, Kerskens C, Blau C, O’Dwyer L, Tivnan A, Kelly JA, Brankin B, Farrar GJ et al (2008) RNAi-mediated reversible opening of the blood-brain barrier. J Gene Med 10:930–947

    Article  CAS  PubMed  Google Scholar 

  21. Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175:1768–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R et al (2015) Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 138:1548–1567

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng JP, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ (2015) Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 211:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L et al (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 96:9815–9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Curtis TM, Gardiner TA, Stitt AW (2009) Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond) 23:1496–1508

    Article  CAS  Google Scholar 

  26. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–672

    Article  CAS  PubMed  Google Scholar 

  27. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122

    Article  CAS  PubMed  Google Scholar 

  29. Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 34:86–97

    Article  CAS  PubMed  Google Scholar 

  30. Dobrivojevic M, Spiranec K, Sindic A (2015) Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 467:201–212

    Article  CAS  PubMed  Google Scholar 

  31. Drozdzik M, Bialecka M, Mysliwiec K, Honczarenko K, Stankiewicz J, Sych Z (2003) Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 13:259–263

    Article  CAS  PubMed  Google Scholar 

  32. Duran WN, Breslin JW, Sanchez FA (2010) The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 87:254–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dvorak AM, Feng D (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49:419–432

    Article  CAS  PubMed  Google Scholar 

  34. Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Emerich DF, Dean RL, Osborn C, Bartus RT (2001) The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: from concept to clinical evaluation. Clin Pharmacokinet 40:105–123

    Article  CAS  PubMed  Google Scholar 

  36. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Article  PubMed  Google Scholar 

  37. Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51:967–977

    Article  CAS  PubMed  Google Scholar 

  38. Fraser PA, Dallas AD, Davies S (1990) Measurement of filtration coefficient in single cerebral microvessels of the frog. J Physiol 423:343–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goddard LM, Iruela-Arispe ML (2013) Cellular and molecular regulation of vascular permeability. Thromb Haemost 109:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21:169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47:5106–5115

    Article  PubMed  Google Scholar 

  43. Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE (2015) Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin Cell Dev Biol 38:16–25

    Article  CAS  PubMed  Google Scholar 

  44. Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ (2015) Dabigatran abrogates brain endothelial cell permeability in response to thrombin. J Cereb Blood Flow Metab 35:985–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herrnberger L, Seitz R, Kuespert S, Bosl MR, Fuchshofer R, Tamm ER (2012) Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem Cell Biol 138:709–724

    Article  CAS  PubMed  Google Scholar 

  46. Hirano A, Kawanami T, Llena JF (1994) Electron microscopy of the blood-brain barrier in disease. Microsc Res Tech 27:543–556

    Article  CAS  PubMed  Google Scholar 

  47. Hofman P, Blaauwgeers HG, Tolentino MJ, Adamis AP, Nunes Cardozo BJ, Vrensen GF, Schlingemann RO (2000) VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Curr Eye Res 21:637–645

    Article  CAS  PubMed  Google Scholar 

  48. Hudson N, Powner MB, Sarker MH, Burgoyne T, Campbell M, Ockrim ZK, Martinelli R, Futter CE, Grant MB, Fraser PA et al (2014) Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev Cell 30:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jadidi-Niaragh F, Mirshafiey A (2010) Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 59:180–189

    Article  CAS  PubMed  Google Scholar 

  50. Jeynes B, Provias J (2011) The case for blood-brain barrier dysfunction in the pathogenesis of Alzheimer’s disease. J Neurosci Res 89:22–28

    Article  CAS  PubMed  Google Scholar 

  51. Jia W, Martin TA, Zhang G, Jiang WG (2013) Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Res 33:2353–2359

    PubMed  Google Scholar 

  52. Keaney J, Walsh DM, O’Malley T, Hudson N, Crosbie DE, Loftus T, Sheehan F, McDaid J, Humphries MM, Callanan JJ et al (2015) Autoregulated paracellular clearance of amyloid-beta across the blood-brain barrier. Sci Adv 1:e1500472

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim BJ, Hancock BM, Bermudez A, Del Cid N, Reyes E, van Sorge NM, Lauth X, Smurthwaite CA, Hilton BJ, Stotland A et al (2015) Bacterial induction of Snail1 contributes to blood-brain barrier disruption. J Clin Invest 125:2473–2483

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim GS, Yang L, Zhang G, Zhao H, Selim M, McCullough LD, Kluk MJ, Sanchez T (2015) Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun 6:7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim HN, Kim YR, Ahn SM, Lee SK, Shin HK, Choi BT (2015) Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier. J Neurochem 135:577–588

    Article  CAS  PubMed  Google Scholar 

  56. Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48

    Article  CAS  PubMed  Google Scholar 

  57. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  CAS  PubMed  Google Scholar 

  59. Kreuter J (2014) Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71:2–14

    Article  CAS  PubMed  Google Scholar 

  60. Krueger M, Bechmann I, Immig K, Reichenbach A, Hartig W, Michalski D (2015) Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab 35:292–303

    Article  CAS  PubMed  Google Scholar 

  61. Krueger M, Hartig W, Reichenbach A, Bechmann I, Michalski D (2013) Blood-brain barrier breakdown after embolic stroke in rats occurs without ultrastructural evidence for disrupting tight junctions. PLoS One 8:e56419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li G, Yuan W, Fu BM (2010) A model for the blood-brain barrier permeability to water and small solutes. J Biomech 43:2133–2140

    Article  PubMed  Google Scholar 

  63. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin MI, Yu J, Murata T, Sessa WC (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu L, Wan W, Xia S, Kalionis B, Li Y (2014) Dysfunctional Wnt/beta-catenin signaling contributes to blood-brain barrier breakdown in Alzheimer’s disease. Neurochem Int 75:19–25

    Article  CAS  PubMed  Google Scholar 

  67. Liu LB, Xue YX, Liu YH (2010) Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J Neurooncol 99:187–194

    Article  CAS  PubMed  Google Scholar 

  68. Liu X, Zhou X, Yuan W (2014) The angiopoietin1-Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8. Exp Cell Res 328:118–131

    Article  CAS  PubMed  Google Scholar 

  69. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  70. Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR 2nd, Raleigh DR, Guan Y, Watson AJ, Montrose MH et al (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J (2009) ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell 20:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martins T, Burgoyne T, Kenny BA, Hudson N, Futter CE, Ambrosio AF, Silva AP, Greenwood J, Turowski P (2013) Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells. Neuropharmacology 65:74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    CAS  PubMed  Google Scholar 

  74. Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118:228–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller JW, Le CJ, Strauss EC, Ferrara N (2013) Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120:106–114

    Article  PubMed  Google Scholar 

  76. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murakami T, Felinski EA, Antonetti DA (2009) Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 284:21036–21046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114:459–469

    Article  CAS  PubMed  Google Scholar 

  79. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neuwelt EA, Frenkel EP, Diehl J, Vu LH, Rapoport S, Hill S (1980) Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:44–52

    Article  CAS  PubMed  Google Scholar 

  81. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60

    Article  CAS  PubMed  Google Scholar 

  82. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219

    Article  CAS  PubMed  Google Scholar 

  84. Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE et al (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. On NH, Savant S, Toews M, Miller DW (2013) Rapid and reversible enhancement of blood-brain barrier permeability using lysophosphatidic acid. J Cereb Blood Flow Metab 33:1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Orsenigo F, Giampietro C, Ferrari A, Corada M, Galaup A, Sigismund S, Ristagno G, Maddaluno L, Koh GY, Franco D et al (2012) Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 3:1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211

    Article  CAS  PubMed  Google Scholar 

  88. Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Paul D, Cowan AE, Ge S, Pachter JS (2013) Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res 86:1–10

    Article  CAS  PubMed  Google Scholar 

  90. Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO et al (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289

    Article  CAS  PubMed  Google Scholar 

  91. Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797

    Article  CAS  PubMed  Google Scholar 

  92. Prager B, Spampinato SF, Ransohoff RM (2015) Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol Med 21:354–363

    Article  CAS  PubMed  Google Scholar 

  93. Price CJ, Hoyda TD, Ferguson AV (2008) The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14:182–194

    Article  PubMed  Google Scholar 

  94. Radu M, Chernoff J (2013). An in vivo assay to test blood vessel permeability. J Vis Exp 73:e50062

    Google Scholar 

  95. Rapoport SI, Robinson PJ (1986) Tight-junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann N Y Acad Sci 481:250–267

    Article  CAS  PubMed  Google Scholar 

  96. Regan ER, Aird WC (2012) Dynamical systems approach to endothelial heterogeneity. Circ Res 111:110–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rippe B, Haraldsson B (1994) Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74:163–219

    CAS  PubMed  Google Scholar 

  98. Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    Article  CAS  PubMed  Google Scholar 

  99. Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ (1997) F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res 768:10–18

    Article  CAS  PubMed  Google Scholar 

  100. Rochfort KD, Cummins PM (2015) The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43:702–706

    Article  CAS  PubMed  Google Scholar 

  101. Sarker MH, Easton AS, Fraser PA (1998) Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J Physiol 507(Pt 3):909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sarker MH, Hu DE, Fraser PA (2000) Acute effects of bradykinin on cerebral microvascular permeability in the anaesthetized rat. J Physiol 528(Pt 1):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM (2012) Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab 32:81–92

    Article  CAS  PubMed  Google Scholar 

  104. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA (2013) Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med 34:742–752

    Article  CAS  PubMed  Google Scholar 

  105. Scallan J, Huxley VH, Korthuis RJ (2010) Capillary fluid exchange: regulation, functions, and pathology. Morgan & Claypool Life Sciences Publishers, San Rafael

    Google Scholar 

  106. Schallek J, Geng Y, Nguyen H, Williams DR (2013) Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci 54:8237–8250

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schulte D, Kuppers V, Dartsch N, Broermann A, Li H, Zarbock A, Kamenyeva O, Kiefer F, Khandoga A, Massberg S et al (2011) Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 30:4157–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, Lo EH (2012) Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des 18:3645–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shue EH, Carson-Walter EB, Liu Y, Winans BN, Ali ZS, Chen J, Walter KA (2008) Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models. BMC Neurosci 9:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Shvets E, Bitsikas V, Howard G, Hansen CG, Nichols BJ (2015) Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat Commun 6:6867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  CAS  PubMed  Google Scholar 

  112. Simionescu M, Ghinea N, Fixman A, Lasser M, Kukes L, Simionescu N, Palade GE (1988) The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J Submicrosc Cytol Pathol 20:243–261

    CAS  PubMed  Google Scholar 

  113. Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, Arnold TD, Derugin N, Vexler ZS, Yen FT et al (2015) LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol 208:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723

    Article  CAS  PubMed  Google Scholar 

  115. Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW (2002) Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol 22:901–906

    Article  CAS  PubMed  Google Scholar 

  116. Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, McGarry CL, Buitendijk M, Nemani KV, Elgueta R et al (2012) The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev Cell 23:1203–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149

    Article  CAS  PubMed  Google Scholar 

  120. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    Article  CAS  PubMed  Google Scholar 

  121. Takata F, Dohgu S, Matsumoto J, Machida T, Kaneshima S, Matsuo M, Sakaguchi S, Takeshige Y, Yamauchi A, Kataoka Y (2013) Metformin induces up-regulation of blood-brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochem Biophys Res Commun 433:586–590

    Article  CAS  PubMed  Google Scholar 

  122. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lotvall J, Nakagama H, Ochiya T (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Turowski P, Kenny BA (2015) The blood-brain barrier and methamphetamine: open sesame? Front Neurosci 9:156

    Article  PubMed  PubMed Central  Google Scholar 

  126. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12

    Article  PubMed  Google Scholar 

  127. von Wedel-Parlow M, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J, Galla HJ (2011) Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Res 1367:62–76

    Article  CAS  Google Scholar 

  128. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109:181–190

    Article  Google Scholar 

  129. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    CAS  PubMed  Google Scholar 

  130. Worzfeld T, Schwaninger M (2015) Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 36:340–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Yu HY, Cai YB, Liu Z (2015) Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood-brain barrier in mice. Brain Inj 29:777–784

    Article  PubMed  Google Scholar 

  132. Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR, Tan C, Bien-Ly N, Hersom M, Maloney JA, Meilandt WJ et al (2014) Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med 6:261ra154

    Article  PubMed  CAS  Google Scholar 

  133. Yuan L, Le Bras A, Sacharidou A, Itagaki K, Zhan Y, Kondo M, Carman CV, Davis GE, Aird WC, Oettgen P (2012) ETS-related gene (ERG) controls endothelial cell permeability via transcriptional regulation of the claudin 5 (CLDN5) gene. J Biol Chem 287:6582–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yuan SY, Rigor RR (2010) Regulation of endothelial barrier function. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  135. Zhang F, Xu CL, Liu CM (2015) Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des Devel Ther 9:2089–2100

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhao LN, Yang ZH, Liu YH, Ying HQ, Zhang H, Xue YX (2011) Vascular endothelial growth factor increases permeability of the blood-tumor barrier via caveolae-mediated transcellular pathway. J Mol Neurosci 44:122–129

    Article  CAS  PubMed  Google Scholar 

  137. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J (2014) Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124:3825–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof John Greenwood for stimulating discussions over the past 15 years and for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patric Turowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turowski, P. (2017). Leakage at Blood-Neural Barriers. In: Lyck, R., Enzmann, G. (eds) The Blood Brain Barrier and Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45514-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45514-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45512-9

  • Online ISBN: 978-3-319-45514-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics