Skip to main content

Neuroinflammation in Bacterial Meningitis

  • Chapter
  • First Online:

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Under physiologic conditions, the brain is a microbiologically sterile site and is protected from infection by highly specialized barriers, including the hard bony skull, the tough dura mater, and the restrictive blood–brain barrier (BBB). Host defense mechanisms in the central nervous system (CNS) are limited and tightly regulated. Peripheral immune cells and plasma proteins are largely excluded from the brain parenchyma. Once they have breached the protective barriers and entered the CNS, bacteria multiply within the cerebrospinal fluid space (CSF) highly efficiently exhibiting similar kinetics as in vitro and reaching concentrations of up to 109 CFU/mL.

In response to the multiplying bacteria and their components, i.e., cell wall fragments, lipopolysaccharides, teichoic and lipoteichoic acids, peptidoglycans, bacterial DNA, and other cytosolic factors, resident cells in the perivascular space and the meninges release pro-inflammatory signaling molecules. Tumor necrosis factor-α, interleukin-1β, and IL-6 are released early on and trigger a cascade of other inflammatory mediators, including a variety of cytokines, chemokines, platelet-activating factor, antimicrobial peptides, prostaglandins, matrix metalloproteinases, nitric oxide, and reactive oxygen species initiating a self-perpetuating inflammatory cascade.

The immediate consequences of the intense inflammatory reaction are a massive influx of leukocytes, the breakdown of the blood–brain barrier with the formation of brain edema, and alterations of the cerebral blood flow. This overshooting inflammatory reaction to the invading pathogens causes damage to the brain parenchyma as collateral damage and is the driving pathophysiologic mechanism of inflammatory inner ear damage, brain cortical ischemic injury, and hippocampal apoptosis, the most frequent histopathological correlates of the neurofunctional sequelae of bacterial meningitis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. van de Beek, Cabellos et al (2016) ESCMID guideline: diagnosis and treatment of bacterial meningitis. Clin Microbiol Infect 22 Suppl 3:S37–S62. doi: 10.1016/j.cmi.2016.01.007

  2. McCullers JA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19(3):571–582. doi:10.1128/CMR.00058-05, 19/3/571 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, Adderson EE (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80(4):1629–1636. doi:10.1128/JVI.80.4.1629-1636.2006, 80/4/1629 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greenwood BM (1987) The epidemiology of acute bacterial meningitis in tropical Africa. In: Bacterial meningitis. Academic press, London, p 61–91

    Google Scholar 

  5. Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011) Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 24(3):557–591. doi:10.1128/CMR.00008-11, 24/3/557 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steinfort C, Wilson R, Mitchell T, Feldman C, Rutman A, Todd H, Sykes D, Walker J, Saunders K, Andrew PW et al (1989) Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect Immun 57(7):2006–2013

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirst RA, Sikand KS, Rutman A, Mitchell TJ, Andrew PW, O’Callaghan C (2000) Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect Immun 68(3):1557–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kadioglu A, Taylor S, Iannelli F, Pozzi G, Mitchell TJ, Andrew PW (2002) Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect Immun 70(6):2886–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao VK, Krasan GP, Hendrixson DR, Dawid S, St Geme JW 3rd (1999) Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol Rev 23(2):99–129, S0168-6445(98)00039-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Merz AJ, So M (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457

    Article  CAS  PubMed  Google Scholar 

  11. Wani JH, Gilbert JV, Plaut AG, Weiser JN (1996) Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect Immun 64:3967–3974

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Poulsen K, Reinholdt J, Jespersgaard C, Boye K, Brown TA, Hauge M, Kilian M (1998) A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect Immun 66(1):181–190

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vitovski S, Read RC, Sayers JR (1999) Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J 13(2):331–337

    CAS  PubMed  Google Scholar 

  14. Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW (2012) Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 20(10):501–510. doi:10.1016/j.tim.2012.06.005, S0966-842X(12)00116-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle JC, Cayet N, Prevost MC, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 104(3):997–1002. doi:10.1073/pnas.0609672104, 0609672104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davis KM, Akinbi HT, Standish AJ, Weiser JN (2008) Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog 4(12):e1000241. doi:10.1371/journal.ppat.1000241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Davis KM, Weiser JN (2011) Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 79(2):562–570. doi:10.1128/IAI.00651-10, IAI.00651-10 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Shakhnovich EA, King SJ, Weiser JN (2002) Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70(12):7161–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bogaardt C, van Tonder AJ, Brueggemann AB (2015) Genomic analyses of pneumococci reveal a wide diversity of bacteriocins – including pneumocyclicin, a novel circular bacteriocin. BMC Genomics 16(1):554. doi:10.1186/s12864-015-1729-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10:59. doi:10.1186/1471-2180-10-59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hammerschmidt S (2006) Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 9(1):12–20. doi:10.1016/j.mib.2005.11.001, S1369-5274(05)00193-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Anderton JM, Rajam G, Romero-Steiner S, Summer S, Kowalczyk AP, Carlone GM, Sampson JS, Ades EW (2007) E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb Pathog 42(5–6):225–236. doi:10.1016/j.micpath.2007.02.003, S0882-4010(07)00021-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Rowe HA, Griffiths NJ, Hill DJ, Virji M (2007) Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis. Cell Microbiol 9(1):154–168. doi:10.1111/j.1462-5822.2006.00775.x, CMI775 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Weber A, Harris K, Lohrke S, Forney L, Smith AL (1991) Inability to express fimbriae results in impaired ability of Haemophilus influenzae b to colonize the nasopharynx. Infect Immun 59(12):4724–4728

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cotter SE, Yeo HJ, Juehne T, St Geme JW 3rd (2005) Architecture and adhesive activity of the Haemophilus influenzae Hsf adhesin. J Bacteriol 187(13):4656–4664. doi:10.1128/JB.187.13.4656-4664.2005, 187/13/4656 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Bouguenec C (2005) Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 295(6–7):471–478

    Article  PubMed  CAS  Google Scholar 

  27. Sokurenko EV, Chesnokova V, Dykhuizen DE, Ofek I, Wu XR, Krogfelt KA, Struve C, Schembri MA, Hasty DL (1998) Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95(15):8922–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Antao EM, Wieler LH, Ewers C (2009) Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog 1(1):22. doi:10.1186/1757-4749-1-22, 1757-4749-1-22 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124(4):715–727. doi:10.1016/j.cell.2006.02.012, S0092-8674(06)00187-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Tazi A, Disson O, Bellais S, Bouaboud A, Dmytruk N, Dramsi S, Mistou MY, Khun H, Mechler C, Tardieux I, Trieu-Cuot P, Lecuit M, Poyart C (2010) The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med 207(11):2313–2322. doi:10.1084/jem.20092594, jem.20092594 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maisey HC, Doran KS, Nizet V (2008) Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 10:e27. doi:10.1017/S1462399408000811, S1462399408000811 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rinaudo CD, Rosini R, Galeotti CL, Berti F, Necchi F, Reguzzi V, Ghezzo C, Telford JL, Grandi G, Maione D (2010) Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One 5(2):e9216. doi:10.1371/journal.pone.0009216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mengaud J, Ohayon H, Gounon P, Mege RM, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84(6):923–932, S0092-8674(00)81070-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  34. Lecuit M (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect 11(6):430–436. doi:10.1111/j.1469-0691.2005.01146.x, CLM1146 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Posfay-Barbe KM, Wald ER (2009) Listeriosis. Semin Fetal Neonatal Med 14(4):228–233. doi:10.1016/j.siny.2009.01.006, S1744-165X(09)00006-7 [pii]

    Article  PubMed  Google Scholar 

  36. Lecuit M, Nelson DM, Smith SD, Khun H, Huerre M, Vacher-Lavenu MC, Gordon JI, Cossart P (2004) Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci U S A 101(16):6152–6157. doi:10.1073/pnas.0401434101, 0401434101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44. doi:10.1038/nature01451, nature01451 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Veiga E, Guttman JA, Bonazzi M, Boucrot E, Toledo-Arana A, Lin AE, Enninga J, Pizarro-Cerda J, Finlay BB, Kirchhausen T, Cossart P (2007) Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. Cell Host Microbe 2(5):340–351. doi:10.1016/j.chom.2007.10.001, S1931-3128(07)00247-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gradstedt H, Iovino F, Bijlsma JJ (2013) Streptococcus pneumoniae invades endothelial host cells via multiple pathways and is killed in a lysosome dependent manner. PLoS One 8(6):e65626. doi:10.1371/journal.pone.0065626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 102(2):347–360. doi:10.1172/JCI2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI (2005) Beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 73(12):7827–7835. doi:10.1128/IAI.73.12.7827-7835.2005, 73/12/7827 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS (2003) The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 5(4):245–252, 271 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102(6):827–837

    Article  CAS  PubMed  Google Scholar 

  44. Elm C, Braathen R, Bergmann S, Frank R, Vaerman JP, Kaetzel CS, Chhatwal GS, Johansen FE, Hammerschmidt S (2004) Ectodomains 3 and 4 of human polymeric Immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279(8):6296–6304. doi:10.1074/jbc.M310528200, M310528200 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Gray-Owen SD, Blumberg RS (2006) CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 6(6):433–446. doi:10.1038/nri1864, nri1864 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Sadarangani M, Pollard AJ, Gray-Owen SD (2011) Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 35(3):498–514. doi:10.1111/j.1574-6976.2010.00260.x

    Article  CAS  PubMed  Google Scholar 

  47. Griffiths NJ, Bradley CJ, Heyderman RS, Virji M (2007) IFN-gamma amplifies NFkappaB-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1. Cell Microbiol 9(12):2968–2983. doi:10.1111/j.1462-5822.2007.01038.x, CMI1038 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M (2011) Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208(11):2263–2277. doi:10.1084/jem.20110560, jem.20110560 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le Monnier A, Babinet C, Cossart P, Lecuit M (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455(7216):1114–1118. doi:10.1038/nature07303, nature07303 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Clarke TB, Francella N, Huegel A, Weiser JN (2011) Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe 9(5):404–414. doi:10.1016/j.chom.2011.04.012, S1931-3128(11)00134-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zwijnenburg PJ, van der Poll T, Florquin S, van Deventer SJ, Roord JJ, van Furth AM (2001) Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis 183(7):1143–1146

    Article  CAS  PubMed  Google Scholar 

  52. Hirst RA, Kadioglu A, O’Callaghan C, Andrew PW (2004) The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 138(2):195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Attali C, Durmort C, Vernet T, Di Guilmi AM (2008) The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect Immun 76(11):5350–5356. doi:10.1128/IAI.00184-08, IAI.00184-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soriani M, Santi I, Taddei A, Rappuoli R, Grandi G, Telford JL (2006) Group B Streptococcus crosses human epithelial cells by a paracellular route. J Infect Dis 193(2):241–250. doi:10.1086/498982, JID35189 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Kostyukova NN, Volkova MO, Ivanova VV, Kvetnaya AS (1995) A study of pathogenic factors of Streptococcus pneumoniae strains causing meningitis. FEMS Immunol Med Microbiol 10(2):133–137

    Article  CAS  PubMed  Google Scholar 

  56. Knaust A, Weber MV, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189(8):3246–3255. doi:10.1128/JB.01966-06, JB.01966-06 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Virkola R, Lahteenmaki K, Eberhard T, Kuusela P, van Alphen L, Ullberg M, Korhonen TK (1996) Interaction of Haemophilus influenzae with the mammalian extracellular matrix. J Infect Dis 173(5):1137–1147

    Article  CAS  PubMed  Google Scholar 

  58. Bergmann S, Rohde M, Preissner KT, Hammerschmidt S (2005) The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94(2):304–311. doi:10.1267/THRO05020304, 05080304 [pii]

    CAS  PubMed  Google Scholar 

  59. Steukers L, Glorieux S, Vandekerckhove AP, Favoreel HW, Nauwynck HJ (2012) Diverse microbial interactions with the basement membrane barrier. Trends Microbiol 20(3):147–155. doi:10.1016/j.tim.2012.01.001, S0966-842X(12)00002-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Pron B, Boumaila C, Jaubert F, Berche P, Milon G, Geissmann F, Gaillard JL (2001) Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiol 3(5):331–340, cmi120 [pii]

    Article  CAS  PubMed  Google Scholar 

  61. Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M (2009) Meningococcal interactions with the host. Vaccine 27(Suppl 2):B78–B89. doi:10.1016/j.vaccine.2009.04.069, S0264-410X(09)00636-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Virkola R, Brummer M, Rauvala H, van Alphen L, Korhonen TK (2000) Interaction of fimbriae of Haemophilus influenzae type B with heparin-binding extracellular matrix proteins. Infect Immun 68(10):5696–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344(14):1058–1066. doi:10.1056/NEJM200104053441406

    Article  CAS  PubMed  Google Scholar 

  64. Overturf GD (2003) Indications for the immunological evaluation of patients with meningitis. Clin Infect Dis 36(2):189–194

    Article  PubMed  Google Scholar 

  65. Dietzman DE, Fischer GW, Schoenknecht FD (1974) Neonatal Escherichia coli septicemia – bacterial counts in blood. J Pediatr 85(1):128–130

    Article  CAS  PubMed  Google Scholar 

  66. Adriani KS, Brouwer MC, Geldhoff M, Baas F, Zwinderman AH, Paul Morgan B, Harris CL, van der Ende A, van de Beek D (2013) Common polymorphisms in the complement system and susceptiblity to bacterial meningitis. J Infect 66:255–262. doi:10.1016/j.jinf.2012.10.008, S0163-4453(12)00294-0 [pii]

    Article  PubMed  Google Scholar 

  67. Brouwer MC, de Gans J, Heckenberg SG, Zwinderman AH, van der Poll T, van de Beek D (2009) Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 9(1):31–44. doi:10.1016/S1473-3099(08)70261-5, S1473-3099(08)70261-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Albiger B, Johansson L, Jonsson AB (2003) Lipooligosaccharide-deficient Neisseria meningitidis shows altered pilus-associated characteristics. Infect Immun 71(1):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS (1992) The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest 90(3):897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hyams C, Camberlein E, Cohen JM, Bax K, Brown JS (2010) The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78(2):704–715. doi:10.1128/IAI.00881-09, IAI.00881-09 [pii]

    Article  CAS  PubMed  Google Scholar 

  71. Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen EV (1996) Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104(5):321–338

    Article  CAS  PubMed  Google Scholar 

  72. Vogel U, Hammerschmidt S, Frosch M (1996) Sialic acids of both the capsule and the sialylated lipooligosaccharide of Neisseria meningitis serogroup B are prerequisites for virulence of meningococci in the infant rat. Med Microbiol Immunol (Berl) 185(2):81–87

    Article  CAS  Google Scholar 

  73. Peppoloni S, Ricci S, Orsi CF, Colombari B, De Santi MM, Messino M, Fabio G, Zanardi A, Righi E, Braione V, Tripodi S, Chiavolini D, Cintorino M, Zoli M, Oggioni MR, Blasi E, Pozzi G (2010) The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. Microbes Infect 12(12–13):990–1001. doi:10.1016/j.micinf.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal V, Hammerschmidt S, Malm S, Bergmann S, Riesbeck K, Blom AM (2012) Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b-binding protein and contributes to complement evasion. J Immunol 189(7):3575–3584. doi:10.4049/jimmunol.1102934, jimmunol.1102934 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, Grandi G, Telford JL, Soriani M (2007) BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol 63(3):754–767. doi:10.1111/j.1365-2958.2006.05555.x, MMI5555 [pii]

    Article  CAS  PubMed  Google Scholar 

  76. Zipfel PF, Skerka C, Hellwage J, Jokiranta ST, Meri S, Brade V, Kraiczy P, Noris M, Remuzzi G (2002) Factor H family proteins: on complement, microbes and human diseases. Biochem Soc Trans 30(Pt 6):971–978. doi:10.1042/bst0300971

  77. Maruvada R, Prasadarao NV, Rubens CE (2009) Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. Faseb J 23(11):3967–3977. doi:10.1096/fj.09-138149, fj.09-138149 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lewis LA, Carter M, Ram S (2012) The relative roles of factor H binding protein, neisserial surface protein A, and lipooligosaccharide sialylation in regulation of the alternative pathway of complement on meningococci. J Immunol 188(10):5063–5072. doi:10.4049/jimmunol.1103748, jimmunol.1103748 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh B, Su YC, Riesbeck K (2010) Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 78(3):545–560. doi:10.1111/j.1365-2958.2010.07373.x

    Article  CAS  PubMed  Google Scholar 

  80. Stavru F, Archambaud C, Cossart P (2011) Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 240(1):160–184. doi:10.1111/j.1600-065X.2010.00993.x

    Article  CAS  PubMed  Google Scholar 

  81. Moxon ER, Murphy PA (1978) Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc Natl Acad Sci U S A 75(3):1534–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Redzic Z (2011) Molecular biology of the blood–brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8(1):3. doi:10.1186/2045-8118-8-3, 2045-8118-8-3 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim KS (2002) Strategy of Escherichia coli for crossing the blood–brain barrier. J Infect Dis 186(Suppl 2):S220–S224

    Article  PubMed  Google Scholar 

  84. Moxon ER, Ostrow PT (1977) Haemophilus influenzae meningitis in infant rats: role of bacteremia in pathogenesis of age-dependent inflammatory responses in cerebrospinal fluid. J Infect Dis 135(2):303–307

    Article  CAS  PubMed  Google Scholar 

  85. Kim KS (2008) Mechanisms of microbial traversal of the blood–brain barrier. Nat Rev Microbiol 6(8):625–634. doi:10.1038/nrmicro1952, nrmicro1952 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drevets DA, Leenen PJ, Greenfield RA (2004) Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 17(2):323–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drevets DA, Jelinek TA, Freitag NE (2001) Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect Immun 69(3):1344–1350. doi:10.1128/IAI.69.3.1344-1350.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C, Leenen PJ (2004) The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol 172(7):4418–4424

    Article  CAS  PubMed  Google Scholar 

  89. Nassif X, Bourdoulous S, Eugene E, Couraud PO (2002) How do extracellular pathogens cross the blood–brain barrier? Trends Microbiol 10(5):227–232

    Article  CAS  PubMed  Google Scholar 

  90. Wang MH, Kim KS (2013) Cytotoxic necrotizing factor 1 contributes to Escherichia coli meningitis. Toxins (Basel) 5(11):2270–2280. doi:10.3390/toxins5112270

    Article  CAS  Google Scholar 

  91. Kim BY, Kang J, Kim KS (2005) Invasion processes of pathogenic Escherichia coli. Int J Med Microbiol 295(6–7):463–470

    Article  CAS  PubMed  Google Scholar 

  92. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119(6):1638–1646. doi:10.1172/JCI36759, 36759 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Abouseada NM, Assafi MS, Mahdavi J, Oldfield NJ, Wheldon LM, Wooldridge KG, Ala’Aldeen DA (2012) Mapping the laminin receptor binding domains of Neisseria meningitidis PorA and Haemophilus influenzae OmpP2. PLoS One 7(9):e46233. doi:10.1371/journal.pone.0046233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS (2003) 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem 278(19):16857–16862. doi:10.1074/jbc.M301028200

    Article  CAS  PubMed  Google Scholar 

  95. Kim KJ, Chung JW, Kim KS (2005) 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280(2):1360–1368. doi:10.1074/jbc.M410176200

    Article  CAS  PubMed  Google Scholar 

  96. Iovino F, Molema G, Bijlsma JJ (2014) Platelet endothelial cell adhesion molecule-1, a putative receptor for the adhesion of Streptococcus pneumoniae to the vascular endothelium of the blood–brain barrier. Infect Immun 82(9):3555–3566. doi:10.1128/IAI.00046-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Iovino F, Molema G, Bijlsma JJ (2014) Streptococcus pneumoniae interacts with pIgR expressed by the brain microvascular endothelium but does not co-localize with PAF receptor. PLoS One 9(5):e97914. doi:10.1371/journal.pone.0097914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Coureuil M, Join-Lambert O, Lecuyer H, Bourdoulous S, Marullo S, Nassif X (2012) Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 3(2):164–172. doi:10.4161/viru.18639, 18639 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  99. Maisey HC, Hensler M, Nizet V, Doran KS (2007) Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J Bacteriol 189(4):1464–1467. doi:10.1128/JB.01153-06, JB.01153-06 [pii]

    Article  CAS  PubMed  Google Scholar 

  100. Tenenbaum T, Bloier C, Adam R, Reinscheid DJ, Schroten H (2005) Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect Immun 73(7):4404–4409. doi:10.1128/IAI.73.7.4404-4409.2005, 73/7/4404 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Banerjee A, Kim BJ, Carmona EM, Cutting AS, Gurney MA, Carlos C, Feuer R, Prasadarao NV, Doran KS (2011) Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood–brain barrier penetration. Nat Commun 2:462. doi:10.1038/ncomms1474, ncomms1474 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM (2012) Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. PLoS Pathog 8(10):e1002947. doi:10.1371/journal.ppat.1002947

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tenenbaum T, Spellerberg B, Adam R, Vogel M, Kim KS, Schroten H (2007) Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect 9(6):714–720. doi:10.1016/j.micinf.2007.02.015

    Article  CAS  PubMed  Google Scholar 

  104. Asmat TM, Agarwal V, Saleh M, Hammerschmidt S (2014) Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int J Med Microbiol 304(8):1233–1246. doi:10.1016/j.ijmm.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  105. Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V (2009) The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 206(9):1845–1852. doi:10.1084/jem.20090386, jem.20090386 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS (2010) Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 12(11):1576–1588. doi:10.1111/j.1462-5822.2010.01490.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377(6548):435–438

    Article  CAS  PubMed  Google Scholar 

  108. Reddy MA, Wass CA, Kim KS, Schlaepfer DD, Prasadarao NV (2000) Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect Immun 68(11):6423–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prasadarao NV, Wass CA, Stins MF, Shimada H, Kim KS (1999) Outer membrane protein A-promoted actin condensation of brain microvascular endothelial cells is required for Escherichia coli invasion. Infect Immun 67(11):5775–5783

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Khan NA, Kim Y, Shin S, Kim KS (2007) FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol 9(1):169–178. doi:10.1111/j.1462-5822.2006.00779.x

    Article  CAS  PubMed  Google Scholar 

  111. Maruvada R, Kim KS (2012) IbeA and OmpA of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells. Infect Immun 80(6):2035–2041. doi:10.1128/IAI.06320-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zou Y, He L, Huang SH (2006) Identification of a surface protein on human brain microvascular endothelial cells as vimentin interacting with Escherichia coli invasion protein IbeA. Biochem Biophys Res Commun 351(3):625–630. doi:10.1016/j.bbrc.2006.10.091

    Article  CAS  PubMed  Google Scholar 

  113. Zou Y, He L, Wu CH, Cao H, Xie ZH, Ouyang Y, Wang Y, Jong A, Huang SH (2007) PSF is an IbeA-binding protein contributing to meningitic Escherichia coli K1 invasion of human brain microvascular endothelial cells. Med Microbiol Immunol 196(3):135–143. doi:10.1007/s00430-006-0034-x

    Article  CAS  PubMed  Google Scholar 

  114. Teng CH, Tseng YT, Maruvada R, Pearce D, Xie Y, Paul-Satyaseela M, Kim KS (2010) NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells. Infect Immun 78(7):3090–3096. doi:10.1128/IAI.00034-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Prasadarao NV, Wass CA, Huang SH, Kim KS (1999) Identification and characterization of a novel Ibe10 binding protein that contributes to Escherichia coli invasion of brain microvascular endothelial cells. Infect Immun 67(3):1131–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS (2000) Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. Infect Immun 68(9):5062–5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parthasarathy G, Yao Y, Kim KS (2007) Flagella promote Escherichia coli K1 association with and invasion of human brain microvascular endothelial cells. Infect Immun 75(6):2937–2945. doi:10.1128/IAI.01543-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mu R, Kim BJ, Paco C, Del Rosario Y, Courtney HS, Doran KS (2014) Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. Infect Immun 82(6):2276–2286. doi:10.1128/IAI.01559-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46(4):933–946

    Article  CAS  PubMed  Google Scholar 

  120. Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3(2):213–221. doi:10.4161/viru.19586, 19586 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kastenbauer S, Pfister HW (2003) Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain 126(Pt 5):1015–1025

    Article  PubMed  Google Scholar 

  122. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859

    Article  PubMed  Google Scholar 

  123. Marra A, Brigham D (2001) Streptococcus pneumoniae causes experimental meningitis following intranasal and otitis media infections via a nonhematogenous route. Infect Immun 69(12):7318–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Ginkel FW, McGhee JR, Watt JM, Campos-Torres A, Parish LA, Briles DE (2003) Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc Natl Acad Sci U S A 100(24):14363–14367. doi:10.1073/pnas.2235844100, 2235844100 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sjolinder H, Jonsson AB (2010) Olfactory nerve – a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 5(11):e14034. doi:10.1371/journal.pone.0014034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Konsman JP, Drukarch B, Van Dam AM (2007) (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci 112(1):1–25. doi:10.1042/CS20060043

    Article  CAS  PubMed  Google Scholar 

  127. Kim YS, Honkaniemi J, Sharp FR, Täuber MG (2004) Expression of proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta in the brain during experimental group B streptococcal meningitis. Brain Res Mol Brain Res 128(1):95–102. doi:10.1016/j.molbrainres.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  128. Polfliet MM, Zwijnenburg PJ, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol 167(8):4644–4650

    Article  CAS  PubMed  Google Scholar 

  129. de Vos AF, Dessing MC, Lammers AJ, de Porto AP, Florquin S, de Boer OJ, de Beer R, Terpstra S, Bootsma HJ, Hermans PW, van ’t Veer C, van der Poll T (2015) The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice. PLoS One 10(2):e0118181. doi:10.1371/journal.pone.0118181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hanamsagar R, Hanke ML, Kielian T (2012) Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol 33(7):333–342. doi:10.1016/j.it.2012.03.001, S1471-4906(12)00051-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Koedel U (2009) Toll-like receptors in bacterial meningitis. Curr Top Microbiol Immunol 336:15–40. doi:10.1007/978-3-642-00549-7_2

    CAS  PubMed  Google Scholar 

  132. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451. doi:10.4049/jimmunol.1100790, jimmunol.1100790 [pii]

    Article  CAS  PubMed  Google Scholar 

  133. Neal JW, Gasque P (2013) How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 72(5):370–385. doi:10.1097/NEN.0b013e3182909f2f

    Article  CAS  PubMed  Google Scholar 

  134. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16. doi:10.1016/j.expneurol.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Geldhoff M, Mook-Kanamori BB, Brouwer MC, Valls Seron M, Baas F, van der Ende A, van de Beek D (2013) Genetic variation in inflammasome genes is associated with outcome in bacterial meningitis. Immunogenetics 65(1):9–16. doi:10.1007/s00251-012-0653-x

    Article  CAS  PubMed  Google Scholar 

  136. Sanders MS, van Well GT, Ouburg S, Morre SA, van Furth AM (2012) Toll-like receptor 9 polymorphisms are associated with severity variables in a cohort of meningococcal meningitis survivors. BMC Infect Dis 12:112. doi:10.1186/1471-2334-12-112, 1471-2334-12-112 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. van Well GT, Sanders MS, Ouburg S, van Furth AM, Morre SA (2012) Polymorphisms in toll-like receptors 2, 4, and 9 are highly associated with hearing loss in survivors of bacterial meningitis. PLoS One 7(5):e35837. doi:10.1371/journal.pone.0035837, PONE-D-11-19179 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13(9):621–634. doi:10.1038/nri3515

    Article  CAS  PubMed  Google Scholar 

  139. Iovino F, Orihuela CJ, Moorlag HE, Molema G, Bijlsma JJ (2013) Interactions between blood-borne Streptococcus pneumoniae and the blood–brain barrier preceding meningitis. PLoS One 8(7):e68408. doi:10.1371/journal.pone.0068408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Täuber MG, Moser B (1999) Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 28(1):1–11; quiz 12

    Article  PubMed  Google Scholar 

  141. Kastenbauer S, Angele B, Sporer B, Pfister HW, Koedel U (2005) Patterns of protein expression in infectious meningitis: a cerebrospinal fluid protein array analysis. J Neuroimmunol 164(1–2):134–139

    Article  CAS  PubMed  Google Scholar 

  142. Zwijnenburg PJ, van der Poll T, Roord JJ, van Furth AM (2006) Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun 74(3):1445–1451. doi:10.1128/IAI.74.3.1445-1451.2006, 74/3/1445 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Klein M, Paul R, Angele B, Popp B, Pfister HW, Koedel U (2006) Protein expression pattern in experimental pneumococcal meningitis. Microbes Infect 8(4):974–983. doi:10.1016/j.micinf.2005.10.013, S1286-4579(05)00381-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  144. Mogensen TH, Paludan SR, Kilian M, Ostergaard L (2006) Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 80(2):267–277. doi:10.1189/jlb.1105626, jlb.1105626 [pii]

    Article  CAS  PubMed  Google Scholar 

  145. Fowler MI, Weller RO, Heckels JE, Christodoulides M (2004) Different meningitis-causing bacteria induce distinct inflammatory responses on interaction with cells of the human meninges. Cell Microbiol 6(6):555–567

    Article  CAS  PubMed  Google Scholar 

  146. Tietze K, Dalpke A, Morath S, Mutters R, Heeg K, Nonnenmacher C (2006) Differences in innate immune responses upon stimulation with gram-positive and gram-negative bacteria. J Periodontal Res 41(5):447–454. doi:10.1111/j.1600-0765.2006.00890.x, JRE890 [pii]

    Article  CAS  PubMed  Google Scholar 

  147. Diab A, Zhu J, Linquist L, Wretlind B, Bakhiet M, Link H (1997) Haemophilus influenzae and streptococcus pneumoniae induce different intracerebral mRNA cytokine patterns during the course of experimental bacterial meningitis. Clin Exp Immunol 109:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, Tauber MG, Leppert D (2001) Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 124(Pt 9):1734–1742

    Article  CAS  PubMed  Google Scholar 

  149. Tureen J (1995) Effect of recombinant human tumor necrosis factor-alpha on cerebral oxygen uptake, cerebrospinal fluid lactate, and cerebral blood flow in the rabbit: role of nitric oxide. J Clin Invest 95(3):1086–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood–brain barrier: an expanded therapeutic window. Brain Res 703(1–2):151–155

    Article  CAS  PubMed  Google Scholar 

  151. Andersson PB, Perry VH, Gordon S (1992) Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system. J Exp Med 176(1):255–259

    Article  CAS  PubMed  Google Scholar 

  152. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25(7):1481–1488

    Article  CAS  PubMed  Google Scholar 

  153. Glabinski A, Krajewski S, Rafalowska J (1998) Tumor necrosis factor-alpha induced pathology in the rat brain: characterization of stereotaxic injection model. Folia Neuropathol 36(1):52–62

    CAS  PubMed  Google Scholar 

  154. Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, Fiebich BL, Rosenberg GA (2007) Cyclooxygenase inhibition limits blood–brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323(2):488–498. doi:10.1124/jpet.107.127035, jpet.107.127035 [pii]

    Article  CAS  PubMed  Google Scholar 

  155. Costa A, Gupta R, Signorino G, Malara A, Cardile F, Biondo C, Midiri A, Galbo R, Trieu-Cuot P, Papasergi S, Teti G, Henneke P, Mancuso G, Golenbock DT, Beninati C (2012) Activation of the NLRP3 inflammasome by group B streptococci. J Immunol 188(4):1953–1960. doi:10.4049/jimmunol.1102543, jimmunol.1102543 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N, Hippenstiel S (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279(35):36426–36432

    Article  CAS  PubMed  Google Scholar 

  157. Mitchell AJ, Yau B, McQuillan JA, Ball HJ, Too LK, Abtin A, Hertzog P, Leib SL, Jones CA, Gerega SK, Weninger W, Hunt NH (2012) Inflammasome-dependent IFN-gamma drives pathogenesis in Streptococcus pneumoniae meningitis. J Immunol 189(10):4970–4980. doi:10.4049/jimmunol.1201687, jimmunol.1201687 [pii]

    Article  CAS  PubMed  Google Scholar 

  158. Waage A, Halstensen A, Shalaby R (1998) Local production of tumor necrosis factor, interleukin-l, and interleukin-6 in meningococcal meningitis. J Exp Med 170:1859–1864

    Article  Google Scholar 

  159. Ramilo O, Saez-Llorens X, Mertsola J, Jafari H, Olsen KD, Hansen EJ, Yoshinaga M, Ohkawara S, Nariuchi H, McCracken GH Jr (1990) Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med 172(2):497–507

    Article  CAS  PubMed  Google Scholar 

  160. Rusconi F, Parizzi F, Garlaschi L, Assael BM, Sironi M, Ghezzi P, Mantovani A (1991) Interleukin 6 activity in infants and children with bacterial meningitis. The collaborative study on meningitis. Pediatr Infect Dis J 10(2):117–121

    Article  CAS  PubMed  Google Scholar 

  161. Hirano T, Akira S, Taga T, Kishimoto T (1990) Biological and clinical aspects of interleukin-6. Immunol Today 11:443–445

    Article  CAS  PubMed  Google Scholar 

  162. Cohen MC, Cohen S (1996) Cytokine function, a study in biologic diversity. Am J Clin Pathol 105:589–598

    Article  CAS  PubMed  Google Scholar 

  163. Spanaus KS, Nadal D, Pfister HW, Seebach J, Widmer U, Frei K, Gloor S, Fontana A (1997) C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. J Immunol 158(4):1956–1964

    CAS  PubMed  Google Scholar 

  164. Zwijnenburg PJ, de Bie HM, Roord JJ, van der Poll T, van Furth AM (2003) Chemotactic activity of CXCL5 in cerebrospinal fluid of children with bacterial meningitis. J Neuroimmunol 145(1–2):148–153

    Article  CAS  PubMed  Google Scholar 

  165. Paris MM, Hickey SM, Trujillo M, Ahmed A, Olsen K, McCracken GH Jr (1997) The effect of interleukin-10 on meningeal inflammation in experimental bacterial meningitis. J Infect Dis 176(5):1239–1246

    Article  CAS  PubMed  Google Scholar 

  166. Pfister HW, Frei K, Ottnad B, Koedel U, Tomasz A, Fontana A (1992) Transforming growth factor beta 2 inhibits cerebrovascular changes and brain edema formation in the tumor necrosis factor alpha-independent early phase of experimental pneumococcal meningitis. J Exp Med 176(1):265–268

    Article  CAS  PubMed  Google Scholar 

  167. Cooley ID, Chauhan VS, Donneyz MA, Marriott I (2014) Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia 62(5):818–828. doi:10.1002/glia.22644

    Article  PubMed  PubMed Central  Google Scholar 

  168. Grandgirard D, Gaumann R, Coulibaly B, Dangy JP, Sie A, Junghanss T, Schudel H, Pluschke G, Leib SL (2013) The causative pathogen determines the inflammatory profile in cerebrospinal fluid and outcome in patients with bacterial meningitis. Mediators Inflamm 2013:312476. doi:10.1155/2013/312476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Too LK, Ball HJ, McGregor IS, Hunt NH (2014) The pro-inflammatory cytokine interferon-gamma is an important driver of neuropathology and behavioural sequelae in experimental pneumococcal meningitis. Brain Behav Immun 40:252–268. doi:10.1016/j.bbi.2014.02.020

    Article  CAS  PubMed  Google Scholar 

  170. Kieseier BC, Paul R, Koedel U, Seifert T, Clements JM, Gearing AJ, Pfister HW, Hartung HP (1999) Differential expression of matrix metalloproteinases in bacterial meningitis. Brain 122(Pt 8):1579–1587

    Article  PubMed  Google Scholar 

  171. Paul R, Lorenzl S, Koedel U, Sporer B, Vogel U, Frosch M, Pfister HW (1998) Matrix metalloproteinases contribute to the blood–brain barrier disruption during bacterial meningitis. Ann Neurol 44(4):592–600

    Article  CAS  PubMed  Google Scholar 

  172. Leppert D, Lindberg RL, Kappos L, Leib SL (2001) Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 36(2–3):249–257

    Article  CAS  PubMed  Google Scholar 

  173. Green JA, Thi Hong Chau T, Farrar JJ, Friedland JS, Thwaites GE (2011) CNS infection, CSF matrix metalloproteinase concentrations, and clinical/laboratory features. Neurology 76(6):577–579. doi:10.1212/WNL.0b013e31820b7600, 76/6/577 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tsai HC, Shi MH, Lee SS, Wann SR, Tai MH, Chen YS (2011) Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with meningitis. Clin Microbiol Infect 17(5):780–784. doi:10.1111/j.1469-0691.2010.03393.x

    Article  PubMed  Google Scholar 

  175. Lindberg RL, Sorsa T, Tervahartiala T, Hoffmann F, Mellanen L, Kappos L, Schaad UB, Leib SL, Leppert D (2006) Gelatinase B [matrix metalloproteinase (MMP)-9] and collagenases (MMP-8/-13) are upregulated in cerebrospinal fluid during aseptic and bacterial meningitis in children. Neuropathol Appl Neurobiol 32(3):304–317

    Article  CAS  PubMed  Google Scholar 

  176. Sulik A, Chyczewski L (2008) Immunohistochemical analysis of MMP-9, MMP-2 and TIMP-1, TIMP-2 expression in the central nervous system following infection with viral and bacterial meningitis. Folia Histochem Cytobiol 46(4):437–442. doi:10.2478/v10042-008-0058-8, 468Q020105H97207 [pii]

    PubMed  Google Scholar 

  177. Roine I, Pelkonen T, Lauhio A, Lappalainen M, Cruzeiro ML, Bernardino L, Tervahartiala T, Sorsa T, Peltola H (2015) Changes in MMP-9 and TIMP-1 concentrations in cerebrospinal fluid after 1 week of treatment of childhood bacterial meningitis. J Clin Microbiol 53(7):2340–2342. doi:10.1128/JCM.00714-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollander GA (2000) Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood–brain barrier damage and neurological sequelae. Clin Infect Dis 31(1):80–84

    Article  CAS  PubMed  Google Scholar 

  179. Sellner J, Leib SL (2006) In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation. Neurobiol Dis 21(3):647–656

    Article  CAS  PubMed  Google Scholar 

  180. Meli DN, Loeffler JM, Baumann P, Neumann U, Buhl T, Leppert D, Leib SL (2004) In pneumococcal meningitis a novel water-soluble inhibitor of matrix metalloproteinases and TNF-alpha converting enzyme attenuates seizures and injury of the cerebral cortex. J Neuroimmunol 151(1–2):6–11. doi:10.1016/j.jneuroim.2004.01.026

    Article  CAS  PubMed  Google Scholar 

  181. Liechti FD, Bachtold F, Grandgirard D, Leppert D, Leib SL (2015) The matrix metalloproteinase inhibitor RS-130830 attenuates brain injury in experimental pneumococcal meningitis. J Neuroinflammation 12:43. doi:10.1186/s12974-015-0257-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Liechti FD, Grandgirard D, Leppert D, Leib SL (2014) Matrix metalloproteinase inhibition lowers mortality and brain injury in experimental pneumococcal meningitis. Infect Immun 82(4):1710–1718. doi:10.1128/IAI.00073-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Tunkel AR, Scheld WM (1993) Pathogenesis and pathophysiology of bacterial meningitis. Clin Microbiol Rev 6(2):118–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Korthuis RJ, Anderson DC, Granger DN (1994) Role of neutrophil-endothelial cell adhesion in inflammatory disorders. J Crit Care 9(1):47–71

    Article  CAS  PubMed  Google Scholar 

  185. Täuber MG, Sande MA (1984) Pathogenesis of bacterial meningitis: contributions by experimental models in rabbits. Infection 12(Suppl 1):S3–S10

    Article  PubMed  Google Scholar 

  186. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689. doi:10.1038/nri2156, nri2156 [pii]

    Article  CAS  PubMed  Google Scholar 

  187. Tang T, Frenette PS, Hynes RO, Wagner DD, Mayadas TN (1996) Cytokine-induced meningitis is dramatically attenuated in mice deficient in endothelial selectins. J Clin Invest 97(11):2485–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Granert C, Raud J, Xie X, Lindquist L, Lindbom L (1994) Inhibition of leukocyte rolling with polysaccharide fucoidan prevents pleocytosis in experimental meningitis in the rabbit. J Clin Invest 93(3):929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ostergaard C, Yieng-Kow RV, Benfield T, Frimodt-Moller N, Espersen F, Lundgren JD (2000) Inhibition of leukocyte entry into the brain by the selectin blocker fucoidan decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental pneumococcal meningitis in rabbits. Infect Immun 68(6):3153–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brandt CT, Lundgren JD, Frimodt-Moller N, Christensen T, Benfield T, Espersen F, Hougaard DM, Ostergaard C (2005) Blocking of leukocyte accumulation in the cerebrospinal fluid augments bacteremia and increases lethality in experimental pneumococcal meningitis. J Neuroimmunol 166(1–2):126–131

    Article  CAS  PubMed  Google Scholar 

  191. Weber JR, Angstwurm K, Burger W, Einhaupl KM, Dirnagl U (1995) Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol 63(1):63–68

    Article  CAS  PubMed  Google Scholar 

  192. Saez-Llorens X, Jafari HS, Severien C, Parras F, Olsen KD, Hansen EJ, Singer II, McCracken GH Jr (1991) Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental Haemophilus meningitis. J Clin Invest 88(6):2003–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tuomanen EI, Prasad SM, George JS, Hoepelman AI, Ibsen P, Heron I, Starzyk RM (1993) Reversible opening of the blood–brain barrier by anti-bacterial antibodies. Proc Natl Acad Sci U S A 90(16):7824–7828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Steinmann U, Borkowski J, Wolburg H, Schroppel B, Findeisen P, Weiss C, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T (2013) Transmigration of polymorphonuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro. J Neuroinflammation 10:31. doi:10.1186/1742-2094-10-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wewer C, Seibt A, Wolburg H, Greune L, Schmidt MA, Berger J, Galla HJ, Quitsch U, Schwerk C, Schroten H, Tenenbaum T (2011) Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis. J Neuroinflammation 8:51. doi:10.1186/1742-2094-8-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Che X, Chi F, Wang L, Jong TD, Wu CH, Wang X, Huang SH (2011) Involvement of IbeA in meningitic Escherichia coli K1-induced polymorphonuclear leukocyte transmigration across brain endothelial cells. Brain Pathol 21(4):389–404. doi:10.1111/j.1750-3639.2010.00463.x

    Article  CAS  PubMed  Google Scholar 

  197. von Wedel-Parlow M, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J, Galla HJ (2011) Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Res 1367:62–76. doi:10.1016/j.brainres.2010.09.076, S0006-8993(10)02142-6 [pii]

    Article  CAS  Google Scholar 

  198. Wittchen ES (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14:2522–2545, 3395 [pii]

    Article  CAS  Google Scholar 

  199. Ernst JD, Decazes JM, Sande MA (1983) Experimental pneumococcal meningitis: role of leukocytes in pathogenesis. Infect Immun 41(1):275–279

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Tuomanen EI, Saukkonen K, Sande S, Cioffe C, Wright SD (1989) Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J Exp Med 170(3):959–969

    Article  CAS  PubMed  Google Scholar 

  201. Koedel U, Frankenberg T, Kirschnek S, Obermaier B, Hacker H, Paul R, Hacker G (2009) Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog 5(5):e1000461. doi:10.1371/journal.ppat.1000461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Hoffmann O, Priller J, Prozorovski T, Schulze-Topphoff U, Baeva N, Lunemann JD, Aktas O, Mahrhofer C, Stricker S, Zipp F, Weber JR (2007) TRAIL limits excessive host immune responses in bacterial meningitis. J Clin Invest 117(7):2004–2013. doi:10.1172/JCI30356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. McMillan DA, Lin CY, Aronin SI, Quagliarello VJ (2001) Community-acquired bacterial meningitis in adults: categorization of causes and timing of death. Clin Infect Dis 33(7):969–975

    Article  CAS  PubMed  Google Scholar 

  204. Klein M, Koedel U, Pfefferkorn T, Zeller G, Woehrl B, Pfister HW (2011) Arterial cerebrovascular complications in 94 adults with acute bacterial meningitis. Crit Care 15(6):R281. doi:10.1186/cc10565, cc10565 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  205. Jan W, Zimmerman RA, Bilaniuk LT, Hunter JV, Simon EM, Haselgrove J (2003) Diffusion-weighted imaging in acute bacterial meningitis in infancy. Neuroradiology 45(9):634–639. doi:10.1007/s00234-003-1035-8

    Article  CAS  PubMed  Google Scholar 

  206. Takeoka M, Takahashi T (2002) Infectious and inflammatory disorders of the circulatory system and stroke in childhood. Curr Opin Neurol 15(2):159–164

    Article  PubMed  Google Scholar 

  207. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857. doi:10.1016/j.bbamem.2008.10.022, S0005-2736(08)00348-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  208. Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, Hakenbeck R, Heinz HP (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69(2):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. N’Guessan PD, Schmeck B, Ayim A, Hocke AC, Brell B, Hammerschmidt S, Rosseau S, Suttorp N, Hippenstiel S (2005) Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human endothelial cells. Thromb Haemost 94(2):295–303. doi:10.1267/THRO05020295, 05080295 [pii]

    PubMed  Google Scholar 

  210. Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schroder NW, Weber JR (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115(6):1607–1615. doi:10.1172/JCI23223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Constantin D, Ala’Aldeent D, Murphy S (2002) Transcriptional activation of nitric oxide synthase-2, and NO-induced cell death, in mouse cerebrovascular endothelium exposed to Neisseria meningitidis. J Neurochem 81(2):270–276

    Article  CAS  PubMed  Google Scholar 

  212. Khan NA, Iqbal J, Siddiqui R (2012) Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microb Pathog 53(5–6):269–275. doi:10.1016/j.micpath.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  213. Hupp S, Heimeroth V, Wippel C, Fortsch C, Ma J, Mitchell TJ, Iliev AI (2012) Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 60(1):137–146. doi:10.1002/glia.21256

    Article  PubMed  Google Scholar 

  214. Kim BJ, Hancock BM, Bermudez A, Del Cid N, Reyes E, van Sorge NM, Lauth X, Smurthwaite CA, Hilton BJ, Stotland A, Banerjee A, Buchanan J, Wolkowicz R, Traver D, Doran KS (2015) Bacterial induction of Snail1 contributes to blood–brain barrier disruption. J Clin Invest 125(6):2473–2483. doi:10.1172/JCI74159

    Article  PubMed  PubMed Central  Google Scholar 

  215. Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72(5):648–672. doi:10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  216. Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6(3):179–192. doi:10.2174/157015908785777210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, Hartung HP, Pfister HW (2003) Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 126(Pt 8):1873–1882

    Article  PubMed  Google Scholar 

  218. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl 96:444–450

    Article  CAS  PubMed  Google Scholar 

  219. Ricci S, Grandgirard D, Wenzel M, Braccini T, Salvatore P, Oggioni MR, Leib SL, Koedel U (2014) Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis 14:726. doi:10.1186/s12879-014-0726-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Kastenbauer S, Koedel U, Becker BF, Pfister HW (2002) Oxidative stress in bacterial meningitis in humans. Neurology 58(2):186–191

    Article  CAS  PubMed  Google Scholar 

  221. Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98(11):2632–2639. doi:10.1172/JCI119084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Auer M, Pfister LA, Leppert D, Tauber MG, Leib SL (2000) Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis 182(1):347–350

    Article  CAS  PubMed  Google Scholar 

  223. Koedel U, Pfister HW (1997) Protective effect of the antioxidant N-acetyl-L-cysteine in pneumococcal meningitis in the rat. Neurosci Lett 225(1):33–36

    Article  CAS  PubMed  Google Scholar 

  224. Kastenbauer S, Koedel U, Becker BF, Pfister HW (2001) Experimental meningitis in the rat: protection by uric acid at human physiological blood concentrations. Eur J Pharmacol 425(2):149–152

    Article  CAS  PubMed  Google Scholar 

  225. Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43(4):348–364. doi:10.1080/10715760902751902, 909050919 [pii]

    Article  CAS  PubMed  Google Scholar 

  226. Owens HM, Destache CJ, Dash AK (1999) Simple liquid chromatographic method for the analysis of the blood brain barrier permeability characteristics of ceftriaxone in an experimental rabbit meningitis model. J Chromatogr B Biomed Sci Appl 728(1):97–105

    Article  CAS  PubMed  Google Scholar 

  227. Fishman RA (1975) Brain edema. N Engl J Med 293(14):706–711. doi:10.1056/NEJM197510022931407

    Article  CAS  PubMed  Google Scholar 

  228. Brown LW, Feigin RD (1994) Bacterial meningitis: fluid balance and therapy. Pediatr Ann 23(2):93–98

    Article  CAS  PubMed  Google Scholar 

  229. Lu CH, Chang HW, Lui CC, Huang CR, Chang WN (2006) Cerebral haemodynamics in acute bacterial meningitis in adults. QJM 99(12):863–869. doi:10.1093/qjmed/hcl119, 99/12/863 [pii]

    Article  PubMed  Google Scholar 

  230. Ries S, Schminke U, Fassbender K, Daffertshofer M, Steinke W, Hennerici M (1997) Cerebrovascular involvement in the acute phase of bacterial meningitis. J Neurol 244(1):51–55

    Article  CAS  PubMed  Google Scholar 

  231. Pfister HW, Borasio GD, Dirnagl U, Bauer M, Einhaupl KM (1992) Cerebrovascular complications of bacterial meningitis in adults. Neurology 42(8):1497–1504

    Article  CAS  PubMed  Google Scholar 

  232. Pfister HW, Feiden W, Einhaupl KM (1993) Spectrum of complications during bacterial meningitis in adults. Results of a prospective clinical study. Arch Neurol 50(6):575–581

    Article  CAS  PubMed  Google Scholar 

  233. Vergouwen MD, Schut ES, Troost D, van de Beek D (2010) Diffuse cerebral intravascular coagulation and cerebral infarction in pneumococcal meningitis. Neurocrit Care 13(2):217–227. doi:10.1007/s12028-010-9387-5

    Article  PubMed  Google Scholar 

  234. Perry JR, Bilbao JM, Gray T (1992) Fatal basilar vasculopathy complicating bacterial meningitis. Stroke 23(8):1175–1178

    Article  CAS  PubMed  Google Scholar 

  235. Ment LR, Ehrenkranz RA, Duncan CC (1986) Bacterial meningitis as an etiology of perinatal cerebral infarction. Pediatr Neurol 2(5):276–279

    Article  CAS  PubMed  Google Scholar 

  236. Koedel U, Bernatowicz A, Paul R, Frei K, Fontana A, Pfister HW (1995) Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol 37(3):313–323

    Article  CAS  PubMed  Google Scholar 

  237. Tureen J, Liu Q, Chow L (1996) Near-infrared spectroscopy in experimental pneumococcal meningitis in the rabbit: cerebral hemodynamics and metabolism. Pediatr Res 40(5):759–763

    Article  CAS  PubMed  Google Scholar 

  238. Täuber MG (1989) Brain edema, intracranial pressure and cerebral blood flow in bacterial meningitis. Pediatr Infect Dis J 8(12):915–917

    Article  PubMed  Google Scholar 

  239. Pedersen M, Brandt CT, Knudsen GM, Ostergaard C, Skinhoj P, Frimodt-Moller N, Moller K (2007) Cerebral blood flow autoregulation in early experimental S. pneumoniae meningitis. J Appl Physiol 102(1):72–78. doi:10.1152/japplphysiol.00697.2006, 00697.2006 [pii]

    Article  PubMed  Google Scholar 

  240. Tureen JH, Dworkin RJ, Kennedy SL, Sachdeva M, Sande MA (1990) Loss of cerebrovascular autoregulation in experimental meningitis in rabbits. J Clin Invest 85(2):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Pfister HW, Koedel U, Haberl RL, Dirnagl U, Feiden W, Ruckdeschel G, Einhaupl KM (1990) Microvascular changes during the early phase of experimental bacterial meningitis. J Cereb Blood Flow Metab 10(6):914–922

    Article  CAS  PubMed  Google Scholar 

  242. Lorenzl S, Koedel U, Frei K, Bernatowicz A, Fontana A, Pfister HW (1995) Protective effect of a 21-aminosteroid during experimental pneumococcal meningitis. J Infect Dis 172(1):113–118

    Article  CAS  PubMed  Google Scholar 

  243. Pfister HW, Kodel U, Dirnagl U, Haberl RL, Ruckdeschel G, Einhaupl KM (1992) Effect of catalase on regional cerebral blood flow and brain edema during the early phase of experimental pneumococcal meningitis. J Infect Dis 166(6):1442–1445

    Article  CAS  PubMed  Google Scholar 

  244. Hoffmann OM, Becker D, Weber JR (2007) Bacterial hydrogen peroxide contributes to cerebral hyperemia during early stages of experimental pneumococcal meningitis. J Cereb Blood Flow Metab 27(11):1792–1797. doi:10.1038/sj.jcbfm.9600474, 9600474 [pii]

    Article  CAS  PubMed  Google Scholar 

  245. Schaper M, Gergely S, Lykkesfeldt J, Zbaren J, Leib SL, Tauber MG, Christen S (2002) Cerebral vasculature is the major target of oxidative protein alterations in bacterial meningitis. J Neuropathol Exp Neurol 61(7):605–613

    Article  CAS  PubMed  Google Scholar 

  246. Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141:105–112

    Article  PubMed  CAS  Google Scholar 

  247. Kastenbauer S, Koedel U, Becker BF, Pfister HW (2002) Pneumococcal meningitis in the rat: evaluation of peroxynitrite scavengers for adjunctive therapy. Eur J Pharmacol 449(1–2):177–181

    Article  CAS  PubMed  Google Scholar 

  248. Koedel U, Gorriz C, Lorenzl S, Pfister HW (1997) Increased endothelin levels in cerebrospinal fluid samples from adults with bacterial meningitis. Clin Infect Dis 25(2):329–330

    Article  CAS  PubMed  Google Scholar 

  249. Skopal J, Turbucz P, Vastag M, Bori Z, Pek M, deChatel R, Nagy Z, Toth M, Karadi I (1998) Regulation of endothelin release from human brain microvessel endothelial cells. J Cardiovasc Pharmacol 31(Suppl 1):S370–S372

    Article  CAS  PubMed  Google Scholar 

  250. Sibson NR, Blamire AM, Perry VH, Gauldie J, Styles P, Anthony DC (2002) TNF-alpha reduces cerebral blood volume and disrupts tissue homeostasis via an endothelin- and TNFR2-dependent pathway. Brain 125(Pt 11):2446–2459

    Article  PubMed  Google Scholar 

  251. Sury MD, Frese-Schaper M, Muhlemann MK, Schulthess FT, Blasig IE, Tauber MG, Shaw SG, Christen S (2006) Evidence that N-acetylcysteine inhibits TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase. Free Radic Biol Med 41(9):1372–1383. doi:10.1016/j.freeradbiomed.2006.07.016, S0891-5849(06)00469-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  252. Brunner F, Bras-Silva C, Cerdeira AS, Leite-Moreira AF (2006) Cardiovascular endothelins: essential regulators of cardiovascular homeostasis. Pharmacol Ther 111(2):508–531. doi:10.1016/j.pharmthera.2005.11.001, S0163-7258(05)00262-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  253. Pfister LA, Tureen JH, Shaw S, Christen S, Ferriero DM, Tauber MG, Leib SL (2000) Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis. Ann Neurol 47(3):329–335

    Article  CAS  PubMed  Google Scholar 

  254. Edmond K, Clark A, Korczak VS, Sanderson C, Griffiths UK, Rudan I (2010) Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infect Dis 10(5):317–328. doi:10.1016/S1473-3099(10)70048-7, S1473-3099(10)70048-7 [pii]

    Article  PubMed  Google Scholar 

  255. Kesser BW, Hashisaki GT, Spindel JH, Ruth RA, Scheld WM (1999) Time course of hearing loss in an animal model of pneumococcal meningitis. Otolaryngol Head Neck Surg 120(5):628–637

    Article  CAS  PubMed  Google Scholar 

  256. Woolley AL, Kirk KA, Neumann AM Jr, McWilliams SM, Murray J, Freind D, Wiatrak BJ (1999) Risk factors for hearing loss from meningitis in children: the Children’s Hospital experience. Arch Otolaryngol Head Neck Surg 125(5):509–514

    Article  CAS  PubMed  Google Scholar 

  257. Oostenbrink R, Maas M, Moons KG, Moll HA (2002) Sequelae after bacterial meningitis in childhood. Scand J Infect Dis 34(5):379–382

    Article  PubMed  Google Scholar 

  258. Edmond K, Dieye Y, Griffiths UK, Fleming J, Ba O, Diallo N, Mulholland K (2010) Prospective cohort study of disabling sequelae and quality of life in children with bacterial meningitis in urban Senegal. Pediatr Infect Dis J 29(11):1023–1029. doi:10.1097/INF.0b013e3181e598ea

    PubMed  Google Scholar 

  259. Adachi N, Ito K, Sakata H (2010) Risk factors for hearing loss after pediatric meningitis in Japan. Ann Otol Rhinol Laryngol 119(5):294–296

    PubMed  Google Scholar 

  260. Douglas SA, Sanli H, Gibson WP (2008) Meningitis resulting in hearing loss and labyrinthitis ossificans – does the causative organism matter? Cochlear Implants Int 9(2):90–96. doi:10.1002/cii.344

    PubMed  Google Scholar 

  261. Kutz JW, Simon LM, Chennupati SK, Giannoni CM, Manolidis S (2006) Clinical predictors for hearing loss in children with bacterial meningitis. Arch Otolaryngol Head Neck Surg 132(9):941–945. doi:10.1001/archotol.132.9.941, 132/9/941 [pii]

    Article  PubMed  Google Scholar 

  262. Dichgans M, Jager L, Mayer T, Schorn K, Pfister HW (1999) Bacterial meningitis in adults: demonstration of inner ear involvement using high-resolution MRI. Neurology 52(5):1003–1009

    Article  CAS  PubMed  Google Scholar 

  263. Caye-Thomasen P, Dam MS, Omland SH, Mantoni M (2012) Cochlear ossification in patients with profound hearing loss following bacterial meningitis. Acta Otolaryngol 132(7):720–725. doi:10.3109/00016489.2012.656323

    Article  PubMed  Google Scholar 

  264. Nadol JB Jr, Hsu WC (1991) Histopathologic correlation of spiral ganglion cell count and new bone formation in the cochlea following meningogenic labyrinthitis and deafness. Ann Otol Rhinol Laryngol 100(9 Pt 1):712–716

    Article  PubMed  Google Scholar 

  265. Merchant SN, Gopen Q (1996) A human temporal bone study of acute bacterial meningogenic labyrinthitis. Am J Otol 17(3):375–385

    CAS  PubMed  Google Scholar 

  266. Klein M, Koedel U, Pfister HW, Kastenbauer S (2003) Morphological correlates of acute and permanent hearing loss during experimental pneumococcal meningitis. Brain Pathol 13(2):123–132

    Article  PubMed  Google Scholar 

  267. Caye-Thomasen P, Worsoe L, Brandt CT, Miyazaki H, Ostergaard C, Frimodt-Moller N, Thomsen J (2009) Routes, dynamics, and correlates of cochlear inflammation in terminal and recovering experimental meningitis. Laryngoscope 119(8):1560–1570. doi:10.1002/lary.20260

    Article  PubMed  Google Scholar 

  268. Blank AL, Davis GL, VanDeWater TR, Ruben RJ (1994) Acute Streptococcus pneumoniae meningogenic labyrinthitis. An experimental guinea pig model and literature review. Arch Otolaryngol Head Neck Surg 120(12):1342–1346

    Article  CAS  PubMed  Google Scholar 

  269. Bhatt S, Halpin C, Hsu W, Thedinger BA, Levine RA, Tuomanen E, Nadol JB Jr (1991) Hearing loss and pneumococcal meningitis: an animal model. Laryngoscope 101(12 Pt 1):1285–1292

    Article  CAS  PubMed  Google Scholar 

  270. Klein M, Koedel U, Kastenbauer S, Pfister HW (2008) Nitrogen and oxygen molecules in meningitis-associated labyrinthitis and hearing impairment. Infection 36(1):2–14. doi:10.1007/s15010-007-7153-1

    Article  CAS  PubMed  Google Scholar 

  271. Rappaport JM, Bhatt SM, Kimura RS, Lauretano AM, Levine RA (1999) Electron microscopic temporal bone histopathology in experimental pneumococcal meningitis. Ann Otol Rhinol Laryngol 108(6):537–547

    Article  CAS  PubMed  Google Scholar 

  272. Brandt CT, Caye-Thomasen P, Lund SP, Worsoe L, Ostergaard C, Frimodt-Moller N, Espersen F, Thomsen J, Lundgren JD (2006) Hearing loss and cochlear damage in experimental pneumococcal meningitis, with special reference to the role of neutrophil granulocytes. Neurobiol Dis 23(2):300–311. doi:10.1016/j.nbd.2006.03.006, S0969-9961(06)00060-X [pii]

    Article  CAS  PubMed  Google Scholar 

  273. Winter AJ, Comis SD, Osborne MP, Tarlow MJ, Stephen J, Andrew PW, Hill J, Mitchell TJ (1997) A role for pneumolysin but not neuraminidase in the hearing loss and cochlear damage induced by experimental pneumococcal meningitis in guinea pigs. Infect Immun 65(11):4411–4418

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Klein M, Koedel U, Pfister HW, Kastenbauer S (2003) Meningitis-associated hearing loss: protection by adjunctive antioxidant therapy. Ann Neurol 54(4):451–458. doi:10.1002/ana.10684

    Article  CAS  PubMed  Google Scholar 

  275. Ge NN, Brodie HA, Tinling SP (2008) Long-term hearing loss in gerbils with bacterial meningitis treated with superoxide dismutase. Otol Neurotol 29(8):1061–1067. doi:10.1097/MAO.0b013e31818b6479

    Article  PubMed  Google Scholar 

  276. Bedford H, de Louvois J, Halket S, Peckham C, Hurley R, Harvey D (2001) Meningitis in infancy in England and Wales: follow up at age 5 years. BMJ 323(7312):533–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Anderson V, Anderson P, Grimwood K, Nolan T (2004) Cognitive and executive function 12 years after childhood bacterial meningitis: effect of acute neurologic complications and age of onset. J Pediatr Psychol 29(2):67–81

    Article  PubMed  Google Scholar 

  278. Schmidt H, Heimann B, Djukic M, Mazurek C, Fels C, Wallesch CW, Nau R (2006) Neuropsychological sequelae of bacterial and viral meningitis. Brain 129(Pt 2):333–345

    CAS  PubMed  Google Scholar 

  279. Grimwood K, Anderson P, Anderson V, Tan L, Nolan T (2000) Twelve year outcomes following bacterial meningitis: further evidence for persisting effects. Arch Dis Child 83(2):111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B (2007) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 78(10):1092–1096. doi:10.1136/jnnp.2006.110023, jnnp.2006.110023 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  281. Focke NK, Kallenberg K, Mohr A, Djukic M, Nau R, Schmidt H (2013) Distributed, limbic gray matter atrophy in patients after bacterial meningitis. AJNR Am J Neuroradiol 34:1164–1167. doi:10.3174/ajnr.A3351, ajnr.A3351 [pii]

    Article  CAS  PubMed  Google Scholar 

  282. Grimwood K, Nolan TM, Bond L, Anderson VA, Catroppa C, Keir EH (1996) Risk factors for adverse outcomes of bacterial meningitis. J Paediatr Child Health 32(5):457–462

    Article  CAS  PubMed  Google Scholar 

  283. Libster R, Edwards KM, Levent F, Edwards MS, Rench MA, Castagnini LA, Cooper T, Sparks RC, Baker CJ, Shah PE (2012) Long-term outcomes of group B streptococcal meningitis. Pediatrics 130(1):e8–e15. doi:10.1542/peds.2011-3453, peds.2011-3453 [pii]

    Article  PubMed  Google Scholar 

  284. Bargui F, D’Agostino I, Mariani-Kurkdjian P, Alberti C, Doit C, Bellier N, Morin L, Galli Gibertini G, Smail A, Zanin A, Lorrot M, Dauger S, Neve M, Faye A, Armoogum P, Bourrillon A, Bingen E, Mercier JC, Bonacorsi S, Nigrovic LE, Titomanlio L (2012) Factors influencing neurological outcome of children with bacterial meningitis at the emergency department. Eur J Pediatr 171(9):1365–1371. doi:10.1007/s00431-012-1733-5

    Article  PubMed  Google Scholar 

  285. Hernandez MI, Sandoval CC, Tapia JL, Mesa T, Escobar R, Huete I, Wei XC, Kirton A (2011) Stroke patterns in neonatal group B streptococcal meningitis. Pediatr Neurol 44(4):282–288. doi:10.1016/j.pediatrneurol.2010.11.002, S0887-8994(10)00491-1 [pii]

    Article  PubMed  Google Scholar 

  286. Jorens PG, Parizel PM, Wojciechowski M, Laridon A, De Weerdt A, Mertens G, Ceulemans B (2008) Streptococcus pneumoniae meningoencephalitis with unusual and widespread white matter lesions. Eur J Paediatr Neurol 12(2):127–132. doi:10.1016/j.ejpn.2007.06.007, S1090-3798(07)00112-2 [pii]

    Article  PubMed  Google Scholar 

  287. Shah DK, Daley AJ, Hunt RW, Volpe JJ, Inder TE (2005) Cerebral white matter injury in the newborn following Escherichia coli meningitis. Eur J Paediatr Neurol 9(1):13–17. doi:10.1016/j.ejpn.2004.09.002, S1090-3798(04)00189-8 [pii]

    Article  PubMed  Google Scholar 

  288. Täuber MG, Kim YS, Leib SL (1997) Neuronal injury in meningitis. In: Peterson PK, Remington JS (eds) In defense of the brain. Blackwell Science, Malden, MA, pp 124–143

    Google Scholar 

  289. Nau R, Gerber J, Bunkowski S, Bruck W (2004) Axonal injury, a neglected cause of CNS damage in bacterial meningitis. Neurology 62(3):509–511

    Article  PubMed  Google Scholar 

  290. Gerber J, Seitz RC, Bunkowski S, Bruck W, Nau R (2009) Evidence for frequent focal and diffuse acute axonal injury in human bacterial meningitis. Clin Neuropathol 28(1):33–39, 5350 [pii]

    Article  CAS  PubMed  Google Scholar 

  291. Renier D, Flandin C, Hirsch E, Hirsch JF (1988) Brain abscesses in neonates. A study of 30 cases. J Neurosurg 69(6):877–882. doi:10.3171/jns.1988.69.6.0877

    Article  CAS  PubMed  Google Scholar 

  292. Cone LA, Leung MM, Byrd RG, Annunziata GM, Lam RY, Herman BK (2003) Multiple cerebral abscesses because of Listeria monocytogenes: three case reports and a literature review of supratentorial listerial brain abscess(es). Surg Neurol 59(4):320–328, S0090301903000569 [pii]

    Article  PubMed  Google Scholar 

  293. Zysk G, Bruck W, Gerber J, Bruck Y, Prange HW, Nau R (1996) Anti-inflammatory treatment influences neuronal apoptotic cell death in the dentate gyrus in experimental pneumococcal meningitis. J Neuropathol Exp Neurol 55(6):722–728

    Article  CAS  PubMed  Google Scholar 

  294. Bifrare YD, Gianinazzi C, Imboden H, Leib SL, Tauber MG (2003) Bacterial meningitis causes two distinct forms of cellular damage in the hippocampal dentate gyrus in infant rats. Hippocampus 13(4):481–488

    Article  PubMed  Google Scholar 

  295. Gianinazzi C, Grandgirard D, Imboden H, Egger L, Meli DN, Bifrare YD, Joss PC, Tauber MG, Borner C, Leib SL (2003) Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol 105(5):499–507. doi:10.1007/s00401-003-0672-7

    CAS  PubMed  Google Scholar 

  296. Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118(2):197–217. doi:10.1007/s00401-009-0541-0

    Article  PubMed  Google Scholar 

  297. Loeffler JM, Ringer R, Hablutzel M, Tauber MG, Leib SL (2001) The free radical scavenger alpha-phenyl-tert-butyl nitrone aggravates hippocampal apoptosis and learning deficits in experimental pneumococcal meningitis. J Infect Dis 183(2):247–252. doi:10.1086/317921

    Article  CAS  PubMed  Google Scholar 

  298. Wellmer A, Noeske C, Gerber J, Munzel U, Nau R (2000) Spatial memory and learning deficits after experimental pneumococcal meningitis in mice. Neurosci Lett 296(2–3):137–140

    Article  CAS  PubMed  Google Scholar 

  299. Grandgirard D, Bifrare YD, Pleasure SJ, Kummer J, Leib SL, Tauber MG (2007) Pneumococcal meningitis induces apoptosis in recently postmitotic immature neurons in the dentate gyrus of neonatal rats. Dev Neurosci 29(1–2):134–142

    CAS  PubMed  Google Scholar 

  300. Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Taauber MG (2003) Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 54(3):353–357. doi:10.1203/01.PDR.0000079185.67878.72

    Article  CAS  PubMed  Google Scholar 

  301. Nau R, Soto A, Bruck W (1999) Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol 58(3):265–274

    Article  CAS  PubMed  Google Scholar 

  302. Free SL, Li LM, Fish DR, Shorvon SD, Stevens JM (1996) Bilateral hippocampal volume loss in patients with a history of encephalitis or meningitis. Epilepsia 37(4):400–405

    Article  CAS  PubMed  Google Scholar 

  303. Derugin N, Wendland M, Muramatsu K, Roberts TP, Gregory G, Ferriero DM, Vexler ZS (2000) Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 31(7):1752–1761

    Article  CAS  PubMed  Google Scholar 

  304. Leib SL, Kim YS, Ferriero DM, Täuber MG (1996) Neuroprotective effect of excitatory amino acid antagonist kynurenic acid in experimental bacterial meningitis. J Infect Dis 173(1):166–171

    Article  CAS  PubMed  Google Scholar 

  305. Scheld WM, Dacey RG, Winn HR, Welsh JE, Jane JA, Sande MA (1980) Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis. Alterations with penicillin and methylprednisolone. J Clin Invest 66:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kaplan SL, Feigin RD (1978) The syndrome of inappropriate secretion of antidiuretic hormone in children with bacterial meningitis. J Pediatr 92:758–761

    Article  CAS  PubMed  Google Scholar 

  307. Winkler F, Kastenbauer S, Yousry TA, Maerz U, Pfister HW (2002) Discrepancies between brain CT imaging and severely raised intracranial pressure proven by ventriculostomy in adults with pneumococcal meningitis. J Neurol 249(9):1292–1297

    Article  PubMed  Google Scholar 

  308. Lindvall P, Ahlm C, Ericsson M, Gothefors L, Naredi S, Koskinen LO (2004) Reducing intracranial pressure may increase survival among patients with bacterial meningitis. Clin Infect Dis 38(3):384–390. doi:10.1086/380970, CID31898 [pii]

    Article  PubMed  Google Scholar 

  309. Arcienega II, Brunet JF, Bloch J, Badaut J (2010) Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience 167(4):1103–1114. doi:10.1016/j.neuroscience.2010.02.059, S0306-4522(10)00287-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  310. Saadoun S, Papadopoulos MC (2010) Aquaporin-4 in brain and spinal cord oedema. Neuroscience 168(4):1036–1046. doi:10.1016/j.neuroscience.2009.08.019, S0306-4522(09)01339-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  311. Papadopoulos MC, Verkman AS (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280(14):13906–13912. doi:10.1074/jbc.M413627200, M413627200 [pii]

    Article  CAS  PubMed  Google Scholar 

  312. Saadoun S, Papadopoulos MC, Krishna S (2003) Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumours: immunohistochemical case review. J Clin Pathol 56(12):972–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Blocher J, Eckert I, Elster J, Wiefek J, Eiffert H, Schmidt H (2011) Aquaporins AQP1 and AQP4 in the cerebrospinal fluid of bacterial meningitis patients. Neurosci Lett 504(1):23–27. doi:10.1016/j.neulet.2011.08.049, S0304-3940(11)01234-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  314. Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci 143(1–2):126–131

    Article  CAS  PubMed  Google Scholar 

  315. Guerra-Romero L, Tauber MG, Fournier MA, Tureen JH (1992) Lactate and glucose concentrations in brain interstitial fluid, cerebrospinal fluid, and serum during experimental pneumococcal meningitis. J Infect Dis 166(3):546–550

    Article  CAS  PubMed  Google Scholar 

  316. Wippel C, Maurer J, Fortsch C, Hupp S, Bohl A, Ma J, Mitchell TJ, Bunkowski S, Bruck W, Nau R, Iliev AI (2013) Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage. PLoS Pathog 9(6):e1003380. doi:10.1371/journal.ppat.1003380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Recher M, Malipiero U, Schaer DJ, Koedel U, Pfister HW, Birchler T, Petrausch U, Claus H, Gast H, Fontana A (2013) Inhibition of meningitis-associated neutrophil apoptosis by TNF-alpha depends on functional PI3-kinase in monocytes. J Leukoc Biol 93(2):259–266. doi:10.1189/jlb.0511218, jlb.0511218 [pii]

    Article  CAS  PubMed  Google Scholar 

  318. Tunbridge AJ, Stevanin TM, Lee M, Marriott HM, Moir JW, Read RC, Dockrell DH (2006) Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect Immun 74(1):729–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Wennekamp J, Henneke P (2008) Induction and termination of inflammatory signaling in group B streptococcal sepsis. Immunol Rev 225:114–127. doi:10.1111/j.1600-065X.2008.00673.x, IMR673 [pii]

    Article  CAS  PubMed  Google Scholar 

  320. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340. doi:10.5607/en.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  321. Grammas P, Martinez J, Miller B (2011) Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med 13:e19. doi:10.1017/S1462399411001918

    Article  PubMed  CAS  Google Scholar 

  322. Klein M, Koedel U, Pfister HW (2006) Oxidative stress in pneumococcal meningitis: a future target for adjunctive therapy? Prog Neurobiol 80(6):269–280. doi:10.1016/j.pneurobio.2006.11.008, S0301-0082(06)00143-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  323. Simon RP, Beckman JS (2002) Why pus is bad for the brain. Neurology 58(2):167–168

    Article  PubMed  Google Scholar 

  324. Braun J (2009) Inducible nitric oxide synthase mediates hippocampal caspase-3 activation in pneumococcal meningitis. Int J Neurosci 119(4):455–459. doi:10.1080/00207450802479970, 908868698 [pii]

    Article  CAS  PubMed  Google Scholar 

  325. Leib SL, Kim YS, Black SM, Tureen JH, Tauber MG (1998) Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 177(3):692–700

    Article  CAS  PubMed  Google Scholar 

  326. Guo Z, Sun X, He Z, Jiang Y, Zhang X (2010) Role of matrix metalloproteinase-9 in apoptosis of hippocampal neurons in rats during early brain injury after subarachnoid hemorrhage. Neurol Sci 31(2):143–149. doi:10.1007/s10072-009-0192-x

    Article  PubMed  Google Scholar 

  327. Murase S, McKay RD (2012) Matrix metalloproteinase-9 regulates survival of neurons in newborn hippocampus. J Biol Chem 287(15):12184–12194. doi:10.1074/jbc.M111.297671, M111.297671 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Fujita-Hamabe W, Tokuyama S (2012) The involvement of cleavage of neural cell adhesion molecule in neuronal death under oxidative stress conditions in cultured cortical neurons. Biol Pharm Bull 35(4):624–628, JST.JSTAGE/bpb/35.624 [pii]

    Article  CAS  PubMed  Google Scholar 

  329. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8(2):205–216. doi:10.1016/S1474-4422(09)70016-X, S1474-4422(09)70016-X [pii]

    Article  CAS  PubMed  Google Scholar 

  330. Braun JS, Novak R, Murray PJ, Eischen CM, Susin SA, Kroemer G, Halle A, Weber JR, Tuomanen EI, Cleveland JL (2001) Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J Infect Dis 184(10):1300–1309

    Article  CAS  PubMed  Google Scholar 

  331. Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, Weber JR (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109(1):19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Braun JS, Hoffmann O, Schickhaus M, Freyer D, Dagand E, Bermpohl D, Mitchell TJ, Bechmann I, Weber JR (2007) Pneumolysin causes neuronal cell death through mitochondrial damage. Infect Immun 75(9):4245–4254. doi:10.1128/IAI.00031-07, IAI.00031-07 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Beurg M, Hafidi A, Skinner L, Cowan G, Hondarrague Y, Mitchell TJ, Dulon D (2005) The mechanism of pneumolysin-induced cochlear hair cell death in the rat. J Physiol 568(Pt 1):211–227. doi:10.1113/jphysiol.2005.092478, jphysiol.2005.092478 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Reiss A, Braun JS, Jager K, Freyer D, Laube G, Buhrer C, Felderhoff-Muser U, Stadelmann C, Nizet V, Weber JR (2011) Bacterial pore-forming cytolysins induce neuronal damage in a rat model of neonatal meningitis. J Infect Dis 203(3):393–400. doi:10.1093/infdis/jiq047, jiq047 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. 162583 (to SLL) from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Leib MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agyeman, P., Grandgirard, D., Leib, S.L. (2017). Neuroinflammation in Bacterial Meningitis. In: Lyck, R., Enzmann, G. (eds) The Blood Brain Barrier and Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45514-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45514-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45512-9

  • Online ISBN: 978-3-319-45514-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics