Skip to main content

Remarks on Mittag-Leffler Discrete Function and Putzer Algorithm for Fractional h-Difference Linear Equations

  • Conference paper
  • First Online:
Book cover Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

The paper presents some properties of the discrete Mittag-Leffler two parameter function. The extension of the Putzer algorithm onto linear linear fractional order systems is given. This algorithm allows to find the general solution of linear fractional order systems. The problem of approximation of the solutions to fractional linear differential equation with Caputo operator by the solutions to fractional difference equations using the Putzer algorithm is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozyrska, D., Wyrwas, M.: The \(\cal Z\)-transform method and delta-type fractional difference operators. Discrete Dyn. Natl. Soc. (2015)

    Google Scholar 

  2. Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad.: Tech. 61(1), 251–256 (2013)

    MATH  Google Scholar 

  3. Wu, G-Ch., Baleanu, D., Zeng, S.-D., Luo, W.-H.: Mittag-Leffler function for discrete fractional modelling. J. King Saud Univ. Sci. 28(1), 99–102 (2016)

    Article  Google Scholar 

  4. Putzer, E.J.: Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients. Math. Assoc. Am. 73(1), 2–7 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic Press, New York (2001)

    MATH  Google Scholar 

  6. Bohner, M., Petersen, A.: Dynamic Equations on Time Scales. Bürkhauser, Boston (2001)

    Book  Google Scholar 

  7. Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of \(h\)-difference fractional operators. Advances in the Theory and Applications of Non-integer Order Systems, pp. 191–197. Springer, Berlin (2013)

    Chapter  Google Scholar 

  8. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A foundation for Computer Science. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  9. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602–1611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atıcı, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  13. Mozyrska D., Girejko E.: Overview of the fractional \(h\)-difference operators. In: Advances in Harmonic Analysis and Operator Theory, pp. 253–267. Springer, Berlin (2013)

    Google Scholar 

  14. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29(2), 417–437 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mozyrska, D., Girejko, E., Wyrwas, M.: Fractional nonlinear systems with sequential operators. Cent. Eur. J. Phys. 11(10), 1295–1303 (2013)

    MATH  Google Scholar 

  16. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Mathai, A.M., Haubold, H.: Special Functions for Applied Scientists. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  18. Pawluszewicz, E.: Constrained controllability of fractional \(h\)-difference fractional control systems with Caputo type operator. Discrete Dyn. Natl. Soc. (2015)

    Google Scholar 

Download references

Acknowledgments

The work was supported by Bialystok University of Technology according to the grant no. S/WM/1/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Pawłuszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pawłuszewicz, E. (2017). Remarks on Mittag-Leffler Discrete Function and Putzer Algorithm for Fractional h-Difference Linear Equations. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics