Skip to main content

Application of SubIval, a Method for Fractional-Order Derivative Computations in IVPs

  • Conference paper
  • First Online:
Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

The paper concerns a numerical method for the computations of the fractional derivative in initial value problems. The method bases on a partition of the integrodifferentiation interval into subintervals. It has been referred to previously as the subinterval-based method and is now called SubIval (for simpler reference). The subintervals are modified during a time stepping process – this is determined by an original subinterval dynamics algorithm. The method is mainly built in order to aid in solving problems of circuit theory. Hence, two examples have been introduced to ascertain the method, where both use a fractional order capacitor and a fractional order coil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent - II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  2. Munkhammar, J.D.: Riemann-Liouville fractional derivatives and the Taylor-Riemann series. UUDM Proj. Rep. 7, 1–18 (2004)

    Google Scholar 

  3. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Spałek, D.: Synchronous generator model with fractional order voltage regulator PI\(^{b}\)D\(^{a}\). Acta Energetica 2(23), 78–84 (2015)

    Google Scholar 

  5. Baranowski, J., Bauer, W., Zagórowska, M., Kawala-Janik, A., Dziwiński, T., Pia̧tek, P.: Adaptive non-integer controller for water tank system. Theor. Develop. Appl. Non-Integer Syst. 271–280 (2016)

    Google Scholar 

  6. Schäfer, I., Krüger, K.: Modelling of lossy coils using fractional derivatives. Phys. D: Appl. Phys. 41, 1–8 (2008)

    Google Scholar 

  7. Jakubowska, A., Walczak, J.: Analysis of the transient state in a series circuit of the class RL\(_\beta \)C\(_\alpha \). Circuits Syst. Signal Process. 35, 1831–1853 (2016)

    Article  MathSciNet  Google Scholar 

  8. Mescia, L., Bia, P., Caratelli, D.: Fractional derivative based FDTD modeling of transient wave propagation in Havriliak–Negami media. IEEE Trans. Microw. Theory Tech. 62(9), (2014)

    Google Scholar 

  9. Brociek, R., Słota, D., Wituła R.: Reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. In: Advances in Modelling and Control of Non-integer-Order Systems, pp. 239–247 (2015)

    Google Scholar 

  10. Kawala-Janik, A., Podpora, M., Gardecki, A., Czuczwara, W., Baranowski, J., Bauer, W.: Game controller based on biomedical signals. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 934–939 (2015)

    Google Scholar 

  11. Wang, H., Du, N.: Fast solution methods for space-fractional diffusion equations. J. Comput. Appl. Math. 255, 376–383 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaczorek, T.: Minimum energy control of fractional positive electrical circuits with bounded inputs. Circuits Syst. Signal Process. 1–15 (2015)

    Google Scholar 

  13. Zhou, K., Chen, D., Zhang, X., Zhou, R., Iu, H.H.-C.: Fractional-order three-dimensional circuit network. IEEE Trans. Circuits Syst. I Regul. Pap. 62(10), 2401–2410 (2015)

    Article  MathSciNet  Google Scholar 

  14. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad.: Tech. 61(3), 580–587 (2013)

    Google Scholar 

  15. Momani, S., Noor, M.A.: Numerical methods for fourth order fractional integro-differential equations. Appl. Math. Comput. 182, 754–760 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40(2), 521–529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saeedi, H., Mohseni Moghadam, M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numer. Simul. 16, 1216–1226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, L., Xian-Fang, L., Zhao, Y., Duan, X.-Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127–1134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176, 1–6 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: 11th IEEE International Conference on Control & Automation (ICCA), pp. 1210–1214 (2014)

    Google Scholar 

  23. http://functions.wolfram.com/GammaBetaErf/Beta3/03/01/02/0003/

  24. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Włodarczyk, M., Zawadzki, A.: RLC circuits in aspect of positive fractional derivatives. Sci. Works Sil. Univ. Techn.: Electr. Eng. 1, 75–88 (2011)

    Google Scholar 

  26. Podlubny, I., Kacenak, M.: The Matlab mlf code. MATLAB Central File Exchange (2001–2009). File ID 8738 (2001)

    Google Scholar 

  27. Sowa, M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Acad.: Tech. 62(3), 449–454 (2014)

    MathSciNet  Google Scholar 

  28. Sowa, M.: The subinterval-based (“SubIval”) method and its potential improvements. In: Proceedings of the 39th Conference on Fundamentals of Electrotechnics and Circuit Theory IC-SPETO (2016)

    Google Scholar 

  29. Majka, Ł.: Measurement verification of the nonlinear coil models. In: Proceedings of the 39th Conference on Fundamentals of Electrotechnics and Circuit Theory IC-SPETO (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Sowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sowa, M. (2017). Application of SubIval, a Method for Fractional-Order Derivative Computations in IVPs. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics