Skip to main content

Fractional Prabhakar Derivative and Applications in Anomalous Dielectrics: A Numerical Approach

  • Conference paper
  • First Online:
Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 407))

Abstract

Fractional integrals and derivatives based on the Prabhakar function are useful to describe anomalous dielectric properties of materials whose behaviour obeys to the Havriliak–Negami model. In this work some formulas for defining these operators are described and investigated. A numerical method of product-integration type for solving differential equations with the Prabhakar derivative is derived and its convergence properties are studied. Some numerical experiments are presented to validate the theoretical results.

Work supported by the Cost Action CA15225.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Havriliak, S., Negami, S.: A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)

    Article  Google Scholar 

  2. Garra, R., Gorenflo, R., Polito, F., Tomovski, Ž.: Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  4. Mittag-Leffler, M.G.: Sur l’intégrale de Laplace-Abel. C. R. Acad. Sci. Paris (Ser. II) 136, 937–939 (1902)

    Google Scholar 

  5. Wiman, A.: Über den fundamental satz in der teorie der funktionen \({E}_{\alpha }(x)\). Acta Math. 29(1), 191–201 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  7. Mainardi, F., Garrappa, R.: On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293, 70–80 (2015)

    Article  MathSciNet  Google Scholar 

  8. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. An, J., Van Hese, E., Baes, M.: Phase-space consistency of stellar dynamical models determined by separable augmented densities. Mon. Not. R. Astron. Soc. 422(1), 652–664 (2012)

    Article  Google Scholar 

  10. Saxena, R., Pagnini, G.: Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: the accelerating case. Phys. A: Stat. Mech. Appl. 390(4), 602–613 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chaurasia, V., Singh, J.: Application of Sumudu transform in Schrödinger equation occurring in quantum mechanics. Appl. Math. Sci. 4(57–60), 2843–2850 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Havriliak, S. Jr., Havriliak, S.: Results from an unbiased analysis of nearly 1000 sets of relaxation data. J. Non-Cryst. Solids (PART 1) 172–174, 297–310 (1994)

    Google Scholar 

  13. Nigmatullin, R., Ryabov, Y.: Cole-Davidson dielectric relaxation as a self-similar relaxation process. Phys. Solid State 39(1), 87–90 (1997)

    Article  Google Scholar 

  14. Novikov, V., Wojciechowski, K., Komkova, O., Thiel, T.: Anomalous relaxation in dielectrics. Equations with fractional derivatives. Mater. Sci. Pol. 23(4), 977–984 (2005)

    Google Scholar 

  15. Weron, K., Jurlewicz, A., Magdziarz, M.: Havriliak-Negami response in the framework of the continuous-time random walk. Acta Phys. Pol. B 36(5), 1855–1868 (2005)

    Google Scholar 

  16. Bia, P., Caratelli, D., Mescia, L., Cicchetti, R., Maione, G., Prudenzano, F.: A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media. Signal Process. 107, 312–318 (2015)

    Article  Google Scholar 

  17. Garrappa, R.: Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

    Article  MathSciNet  Google Scholar 

  18. Young, A.: Approximate product-integration. Proc. R. Soc. Lond. Ser. A. 224, 552–561 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dixon, J.: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions. BIT 25(4), 624–634 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Garrappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Garrappa, R., Maione, G. (2017). Fractional Prabhakar Derivative and Applications in Anomalous Dielectrics: A Numerical Approach. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-45474-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45474-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45473-3

  • Online ISBN: 978-3-319-45474-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics