Skip to main content

Identification of Vadose Karst Voids and Ventilation Patterns Coupling Hydrochemical and Geophysical Methods (Maro Spring, Near Nerja, Southern Spain)

  • Conference paper
  • First Online:
EuroKarst 2016, Neuchâtel

Abstract

The Maro Spring, near Nerja, southern Spain, drains a Triassic carbonate aquifer. It presents a typical karstic behaviour. We have compiled more than 220 pH values of water from this spring and a nearby well. The spatial variation of this variable suggests a CO2 degassing effect as far as the groundwater flow gets near the spring. The average pH seasonal variation indicates a maximum during autumn and a minimum in spring. This can be explained by water degassing related to the start of the period of convective ventilation in vadose voids, as happens in the important Nerja Cave located nearby. There also seems to be an effect of downward gas diffusion when the soil respiration is at its peak and the ventilation of the vadose voids is nearly inhibited. These circumstances suggest that Maro Spring water can be spatially linked with unknown cavities. The second phase of this study is the identification of some of these voids by the way of combination of two gravity profiles of 200 m, one designed as a test of the method and the other for prospecting the voids. The link between hydrochemical and geophysical methods is the main aim of this study as such a transdisciplinary approach is not frequently used in hydrogeology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreo B, Carrasco F (1993) Estudio hidrogeológico del entorno de la Cueva de Nerja. In: Carrasco F (ed) Trabajos sobre la Cueva de Nerja 3, Málaga, p 163–187.

    Google Scholar 

  • Arzi A (1975) Microgravimetry for engineering applications. Geophys Prospect 23: 408–425.

    Google Scholar 

  • Benavente J, Vadillo I, Carrasco F et al (2010) Vadose Zone J 29: 647–659.

    Google Scholar 

  • Benavente J, Vadillo I, Liñán C et al (2014) A field analog of CO2-closed conditions in a karstified carbonate aquifer (Nerja Cave Experimental site, south Spain). In: Andreo B et al. (eds.) Hydrogeological and Environmental Investigations in Karst Systems, 1. Springer, New York, p 533–542.

    Google Scholar 

  • Benavente J, Vadillo I, Liñán C et al (2015) Influence of the ventilation of a karst show cave on the surrounding vadose CO2 reservoir (Nerja, South Spain). Environ Earth Sci. doi:10.1007/s12665-015-4709-8.

  • Beres M, Luetscher M, Olivier R (2001) Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. J Appl Geophys 46: 249–262.

    Google Scholar 

  • Brown WA, Stafford KW, Shaw-Faulkner M et al (2011) A comparative integrated geophysical study of Horseshoe Chimney Cave, Colorado Bend State Park, Texas. Int J Speleol 40: 9–16.

    Google Scholar 

  • Butler DK (1984) Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49: 1084–1096.

    Google Scholar 

  • Cardenal J, Benavente J, Cruz San Julián JJ (1994) Chemical Evolution of groundwater in Triassic gypsum-bearing carbonate aquifers (Las Alpujarras, Southern Spain). J Hydrol 161: 3–30.

    Google Scholar 

  • Chamon N, Dobereiner L (1988) An example of the use of geophysical methods for the investigation of a cavern in sandstones. B I A Engin Geol 38: 37–43.

    Google Scholar 

  • Chico RJ (1964) Detection of caves by gravimetry. Int J Speleol 1: 101–108.

    Google Scholar 

  • Colley GC (1963) The detection of caves by gravity measurements. Geophys Prospec 11: 1–9.

    Google Scholar 

  • Hunkeler D, Mudry J (2007) Hydrochemical methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. International Contribution to Hydrogeology, IAH, 26. Taylor and Francis/Balkema, London, p 93–121.

    Google Scholar 

  • Liñán C, Andreo B, Carrasco F (1999) Caracterización hidrodinámica e hidroqímica del manantial de Maro (Sierra Almijara, provincia de Málaga) Geogaceta 27: 95–98.

    Google Scholar 

  • Liñán C, del Rosal Y (2014) Natural ventilation of karstic caves: New data on the Nerja Cave (Malaga, S of Spain). In: Andreo B et al. (eds.) Hydrogeological and Environmental Investigations in Karst Systems, 1. Springer, New York, p 505–511.

    Google Scholar 

  • Martínez-Moreno FJ, Pedrera A, Ruano P et al (2013) Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Eng Geol 162: 67–78.

    Google Scholar 

  • Martínez-Moreno FJ, Galindo-Zaldívar J, Pedrera A et al (2014) Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J Appl Geophys 107: 149–162.

    Google Scholar 

  • Martínez-Moreno FJ, Galindo-Zaldívar J., Pedrera A et al (2015) Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Eng Geol 193: 38–48.

    Google Scholar 

  • Moral F, Benavente J (2010) Importancia del transporte de CO2 a través del aire de la zona no saturada de los sistemas kársticos. Algunos ejemplos de la Cordillera Bética. In: J. J. Durán and F. Carrasco (eds.) Cuevas: Patrimonio, Naturaleza, Cultura y Turismo. Asociación española de Cuevas Turísticas, Madrid, 169–182.

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour Investi Rep. 99-4259. USGS, Reston, VA.

    Google Scholar 

  • Pedley RC, Busby JP, Dabeck Z K (1993) GRAVMAG User Manual - Interactive 2.5D gravity and magnetic modelling. British Geological Survey, Technical Report (WK/93/26/R).

    Google Scholar 

  • Pérez I, Andreo B (2007) Sierra Almijara y Alberquillas. In: Durán, JJ (ed) Atlas Hidrogeológico de la provincia de Málaga, IGME-DPM, Madrid, p 144–148.

    Google Scholar 

  • S.E.M. (1985) La Cueva de Nerja. Patronato de la Cueva de Nerja, Málaga.

    Google Scholar 

  • Vadillo I, Benavente J, Neukum C et al (2012) Surface geophysics and borehole inspection as an aid to characterizing karst voids and vadose ventilation patterns (Nerja research site, S. Spain). J Appl Geophys 82: 153–162.

    Google Scholar 

  • Vadillo I et al. (2016). Nuevos datos hidroquímicos e isotópicos en el manantial kárstico de Maro (Nerja, Málaga). Consideraciones sobre el origen de los solutos y de la influencia de la ventilación en la zona vadosa. Geogaceta 59, 47–50.

    Google Scholar 

Download references

Acknowledgments

Project funded by the Nerja Cave Research Foundation. We also thank Angela L. Tate for the language revision. We appreciate the suggestions made by the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Benavente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Benavente, J., Vadillo, I., Liñán, C., Martínez-Moreno, F.J., Galindo-Zaldívar, J., Carrasco, F. (2017). Identification of Vadose Karst Voids and Ventilation Patterns Coupling Hydrochemical and Geophysical Methods (Maro Spring, Near Nerja, Southern Spain). In: Renard, P., Bertrand, C. (eds) EuroKarst 2016, Neuchâtel. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-319-45465-8_31

Download citation

Publish with us

Policies and ethics