Skip to main content

Physicochemical Characterizations of Nanoparticles Used for Bioenergy and Biofuel Production

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Understanding the physicochemical properties of nanomaterials and how functionalizations modify their surface, altering their properties, is fundamental to defining better strategies of use. In fact, it is known that the surface characteristics of nanomaterials present batch-to-batch differences. Therefore, a good understanding of nanoparticle surface requires the use of several physicochemical and morphological techniques to adequately determine their shape, size and charge, as well as the presence of coatings and their functional groups. Furthermore, those parameters are crucial to determine acceptable differences of the surface chemistry that do not alter their properties and applications. Thus, in this chapter, we will discuss several physicochemical techniques that focus on nanoparticles for bioenergy and biofuel production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agiotis L, Theodorakos I, Samothrakitis S, Papazoglou S, Zergioti I, Raptis YS (2016) Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J Magn Magn Mater 401(March):956–964. doi:10.1016/j.jmmm.2015.10.111

    Article  Google Scholar 

  • Arsiwala A, Desai P, Patravale V (2014) Recent advances in micro/nanoscale biomedical implants. J Control Release 189(September):25–45. doi:10.1016/j.jconrel.2014.06.021

    Article  Google Scholar 

  • Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396(3):983–1002. doi:10.1007/s00216-009-3360-1

    Article  Google Scholar 

  • Bagus PS, Ilton ES, Nelin CJ (2013) The interpretation of XPS spectra: insights into materials properties. Surf Sci Rep 68(2):273–304. doi:10.1016/j.surfrep.2013.03.001

    Article  Google Scholar 

  • Bounab L, Iglesias O, Pazos M, Sanromán MÁ, González-Romero E (2016) Effective monitoring of the electro-fenton degradation of phenolic derivatives by differential pulse voltammetry on multi-walled-carbon nanotubes modified screen-printed carbon electrodes. Appl Catal Environ 180(January):544–550. doi:10.1016/j.apcatb.2015.07.011

    Article  Google Scholar 

  • Choi C, Cui Y (2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol 107(March):522–525. doi:10.1016/j.biortech.2011.12.058

    Article  Google Scholar 

  • Choi B, Ahn J-H, Lee J, Yoon J, Lee J, Jeon M, Kim DM, Kim DH, Park I, Choi S-J (2015) A bottom-gate silicon nanowire field-effect transistor with functionalized palladium nanoparticles for hydrogen gas sensors. Solid-State Electron 114(December):76–79. doi:10.1016/j.sse.2015.07.012

    Article  Google Scholar 

  • Covarrubias C, Mattmann M, Von Marttens A, Caviedes P, Arriagada C, Valenzuela F, Rodríguez JP, Corral C (2015) Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Appl Surf Sci. doi:10.1016/j.apsusc.2015.12.022

    Google Scholar 

  • Ebenstein Y, Nahum E, Banin U (2002) Tapping mode atomic force microscopy for nanoparticle sizing: tip−sample interaction effects. Nano Lett 2(9):945–950. doi:10.1021/nl025673p

    Article  Google Scholar 

  • Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L, Wang Z (2015) Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Res 85(November):1–10. doi:10.1016/j.watres.2015.08.011

    Article  Google Scholar 

  • Fiel LA, Rebelo LM, Santiago T de M, Adorne MD, Guterres SS, de Sousa JS, Pohlmann AR (2011) Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter 7(16):7240–7247. doi:10.1039/C1SM05508A

    Article  Google Scholar 

  • França R, Zhang X-F, Veres T, Yahia L’H, Sacher E (2013) Core-shell nanoparticles as prodrugs: possible cytotoxicological and biomedical impacts of batch-to-batch inconsistencies. J Colloid Interface Sci 389(1):292–297. doi:10.1016/j.jcis.2012.08.065

    Article  Google Scholar 

  • Gong F, Gong Y, Liu H, Zhang M, Zhang Y, Li F (2016) Porous In2O3 nanocuboids modified with Pd nanoparticles for chemical sensors. Sens Actuators B 223(February):384–391. doi:10.1016/j.snb.2015.09.053

    Article  Google Scholar 

  • Goodman P (1981) Fifty years of electron diffraction. Springer Netherlands

    Google Scholar 

  • Johnson BFG (2003) Nanoparticles in catalysis. Topics Catal 24(1–4):147–159. doi:10.1023/B:TOCA.0000003086.83434.b6

    Article  Google Scholar 

  • Junno T, Deppert K, Montelius L, Samuelson L (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett 66(26):3627. doi:10.1063/1.113809

    Article  Google Scholar 

  • Kalantar-zadeh K, Fry B (2008) Nanotechnology-enabled sensors. Springer US, Boston, MA

    Book  Google Scholar 

  • Kim Y-K, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159(May):446–450. doi:10.1016/j.biortech.2014.03.046

    Article  Google Scholar 

  • Klapetek P, Valtr M, Nečas D, Salyk O, Dzik P (2011) Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res Lett 6(1):514. doi:10.1186/1556-276X-6-514

    Article  Google Scholar 

  • Kuppusamy P, Yusoff MM, Ichwan SJA, Parine NR, Maniam GP, Govindan N (2015) Commelina Nudiflora L. Edible weed as a novel source for gold nanoparticles synthesis and studies on different physical–chemical and biological properties. J Indus Eng Chem 27(July):59–67. doi:10.1016/j.jiec.2014.11.045

    Article  Google Scholar 

  • Kuthati Y, Kankala RK, Lee C-H (2015) Layered double hydroxide nanoparticles for biomedical applications: current status and recent prospects. Appl Clay Sci 112–113(August):100–116. doi:10.1016/j.clay.2015.04.018

    Article  Google Scholar 

  • Liu Y, Harnisch F, Fricke K, Sietmann R, Schröder U (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24(4):1012–1017. doi:10.1016/j.bios.2008.08.001

    Article  Google Scholar 

  • Magonov SN, Elings V, Whangbo M-H (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(2–3):L385–L391. doi:10.1016/S0039-6028(96)01591-9

    Article  Google Scholar 

  • Mansoorian HJ, Mahvi AH, Jafari AJ, Amin MM, Rajabizadeh A, Khanjani N (2013) Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzyme Microb Technol 52(6–7):352–357. doi:10.1016/j.enzmictec.2013.03.004

    Article  Google Scholar 

  • Masood F (2015) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C, November. doi:10.1016/j.msec.2015.11.067

  • Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C Mater Biologic Application 58(January):44–52. doi:10.1016/j.msec.2015.08.022

    Article  Google Scholar 

  • Ong QK, Sokolov I (2007) Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces. J Colloid Interface Sci 310(2):385–390. doi:10.1016/j.jcis.2007.02.010

    Article  Google Scholar 

  • Pines D, Bohm D (1952) A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys Rev 85(2):338–353. doi:10.1103/PhysRev.85.338

    Article  MathSciNet  MATH  Google Scholar 

  • Piyakis KN, Yang D-Q, Sacher E (2003) The applicability of angle-resolved XPS to the characterization of clusters on surfaces. Surf Sci 536(1–3):139–144. doi:10.1016/S0039-6028(03)00571-5

    Article  Google Scholar 

  • Ramesh S, Cohen Y, Aurbach D, Gedanken A (1998) Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chem Phys Lett 287(3–4):461–467. doi:10.1016/S0009-2614(97)01446-2

    Article  Google Scholar 

  • Ravi S, Vadukumpully, S (2015) Sustainable carbon nanomaterials: recent advances and its applications in energy and environmental remediation. J Environ Chem Eng, December. doi:10.1016/j.jece.2015.11.026

  • Rodrigues ADG, Galzerani JC (2012) Infrared, Raman and photoluminescence spectroscopies: potentialities and complementarities. Revista Brasileira de Ensino de Fisica 34:4309

    Google Scholar 

  • Sadykov V, Mezentseva N, Simonov M, Smal E, Arapova M, Pavlova S, Fedorova Y et al (2015) Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: design and performance. Int J Hydrogen Energy 40(24):7511–7522. doi:10.1016/j.ijhydene.2014.11.151

    Article  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(April):3. doi:10.1186/1477-3155-2-3

    Article  Google Scholar 

  • Samiei M, Farjami A, Dizaj SM, Lotfipour F (2016) Nanoparticles for antimicrobial purposes in endodontics: a systematic review of in vitro studies. Mater Sci Eng C Mater Biologic Application 58(January):1269–1278. doi:10.1016/j.msec.2015.08.070

    Article  Google Scholar 

  • Santos FCU, Paim LL, da Silva JL, Stradiotto NR (2016) Electrochemical determination of total reducing sugars from bioethanol production using glassy carbon electrode modified with graphene oxide containing copper nanoparticles. Fuel 163(January):112–121. doi:10.1016/j.fuel.2015.09.046

    Article  Google Scholar 

  • Saravanakumar K, MubarakAli D, Kathiresan K, Thajuddin N, Alharbi NS, Chen J (2016) Biogenic metallic nanoparticles as catalyst for bioelectricity production: a novel approach in microbial fuel cells. Mater Sci Eng B 203(January):27–34. doi:10.1016/j.mseb.2015.10.006

    Article  Google Scholar 

  • Segura R, Pizarro J, Díaz K, Placencio A, Godoy F, Pino E, Recio F (2015) Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sens Actuators B 220(December):263–269. doi:10.1016/j.snb.2015.05.016

    Article  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Singh S, Verma N (2015) Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. Int J Hydrogen Energy 40(2):1145–1153. doi:10.1016/j.ijhydene.2014.11.073

    Article  Google Scholar 

  • Tamayo J, Garcıa R (1997) Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl Phys Lett 71(16):2394. doi:10.1063/1.120039

    Article  Google Scholar 

  • Tang J, Yuan Y, Liu T, Zhou S (2015) High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J Power Sources 274(January):170–176. doi:10.1016/j.jpowsour.2014.10.035

    Article  Google Scholar 

  • Tougaard S (2005) XPS for quantitative analysis of surface nano-structures. Microsc Microanal 11(S02). doi:10.1017/S1431927605500229

  • Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65(3):992–997, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225815/

    Article  Google Scholar 

  • Viguié J-R, Sukmanowski J, Nölting B, Royer F-X (2007) Study of agglomeration of alumina nanoparticles by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Colloids Surf A Physicochem Eng Asp 302(1–3):269–275. doi:10.1016/j.colsurfa.2007.02.038

    Article  Google Scholar 

  • Webster MS, Cooper JS, Chow E, Hubble LJ, Sosa-Pintos A, Wieczorek L, Raguse B (2015) Detection of bacterial metabolites for the discrimination of bacteria utilizing gold nanoparticle chemiresistor sensors. Sens Actuators B 220(December):895–902. doi:10.1016/j.snb.2015.06.024

    Article  Google Scholar 

  • Williams DB, Carter CB (2008) Transmission electron microscopy. Part 1: Basics, 2nd edn

    Google Scholar 

  • Willner I, Willner, B (2002) Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure Appl Chem 74(9). doi:10.1351/pac200274091773

  • Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Lee J (2015) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci. doi:10.1016/j.ejps.2015.12.014

    Google Scholar 

  • Zhang C, Zhang Y, Miao Z, Ma M, Xin D, Lin J, Han B, Takahashi S, Anzai J-i, Chen Q (2016) Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold nanoparticles nanocomposite. Sens Actuators B 222(January):663–673. doi:10.1016/j.snb.2015.08.114

    Article  Google Scholar 

  • Zhang Yu, Yang M, Ozkan M, Ozkan CS (2009) Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake. Biotechnol Prog 25(4):923–928. doi:10.1002/btpr.215

  • Zhou W, Lin L, Wang W, Zhang L, Wu Q, Li J, Guo L (2011) Hierarchial mesoporous hematite with ‘electron-transport channels’ and its improved performances in photocatalysis and lithium ion batteries. J Phys Chem C 115(14):7126–7133. doi:10.1021/jp2011606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaella O. do Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

do Nascimento, R.O., Rebelo, L.M., Sacher, E. (2017). Physicochemical Characterizations of Nanoparticles Used for Bioenergy and Biofuel Production. In: Rai, M., da Silva, S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45459-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45459-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45458-0

  • Online ISBN: 978-3-319-45459-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics