Skip to main content

Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol

  • Chapter
  • First Online:
Nanotechnology for Bioenergy and Biofuel Production

Abstract

The depletion in the limited sources of fossil fuels has generated the problem of energy crisis all over the world. This hunt forces scientific community towards the search for cost-effective, environment-friendly, renewable alternative sources which can replace fossil fuels and fulfill the increasing demands of energy. In this context, the use of lignocellulosic material (plant residues) composed of cellulose, hemicellulose, and lignin becomes the first choice. In the process of ethanol production, first lignocellulosic material is broken down and hydrolyzed into simple sugars like cellulose, and then these sugars are fermented into biofuels such as ethanol in the presence of enzymes like cellulases. The use of cellulases makes the process expensive, and therefore, immobilization of these enzymes on solid supports like nanoparticles can help to recover the enzyme, which ultimately decreases the cost of process. Therefore, the use of nanotechnology and nanomaterials could be one possible avenue to improve biofuel production efficiency and reduction in the processing cost.

This chapter discusses important existing pretreatment approaches involved in the pretreatment of plant biomass use for biofuel production. The emphasis is given on the role of nanotechnological solutions for the development of novel, efficient, and inexpensive strategies for the production of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    Article  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  Google Scholar 

  • Ahmad R, Sardar M (2014) Immobilization of TiO2 nanoparticles on cellulose by physical and covalent method: a comparative study. Indian J Biochem Biophys 51:314–320

    Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):178

    Google Scholar 

  • Ahmed M, Douek M (2013) The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res, 11 pages. doi:10.1155/2013/281230

  • Alftren J, Hobley TJ (2013) Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl Biochem Biotechnol 169:2076–2087

    Article  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523

    Article  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32(3):501–521

    Article  Google Scholar 

  • Borges DG, Baraldo A, Farinas CS Jr, Giordano Rde L, Tardioli PW (2014) Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized beta-glucosidase. Bioresour Technol 167:206–213

    Article  Google Scholar 

  • Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed Engl 42(29):3336–3337

    Article  Google Scholar 

  • Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal 36(8):1223–1229

    Article  Google Scholar 

  • Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee HJ, Bae HJ (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888

    Article  Google Scholar 

  • da Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409

    Article  Google Scholar 

  • Das S, Berke-Schlessel D, Ji HF, McDonough J, Wei Y (2011) Enzymatic hydrolysis of biomass with recyclable use of cellobiase enzyme immobilized in sol–gel routed mesoporous silica. J Mol Catal B: Enzym 70(1–2):49–54

    Article  Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3(1):1–9

    Google Scholar 

  • de Maria PD, Grande PM, Leitner W (2015) Current trends in pretreatment and fractionation of lignocellulose as reflected in industrial patent activities. Chem Ing Tech 87(12):1686–1695

    Article  Google Scholar 

  • Eggert H, Greaker M (2014) Promoting second generation biofuels: does the first generation pave the road? Energies 7:4430–4445

    Article  Google Scholar 

  • Engelmann W, Aldrovandi A, Guilherme A, Filho B (2013) Prospects for the regulation of nanotechnology applied to food and biofuels. Vigilancia Sanitaria em Debate 1(4):110–121

    Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare Kammen MD (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508

    Article  Google Scholar 

  • Feijoo G, Moreira MT, Alvarez P, Lu-Chau TA, Lema JM (2008) Evaluation of the enzyme manganese peroxidase in an industrial sequence for the lignin oxidation and bleaching or eucalyptus kraft pulp. J Appl Polym Sci 109(2):1319–1327

    Article  Google Scholar 

  • Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49):16864–16873

    Article  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30(4):445–453

    Article  Google Scholar 

  • Han KK, Richard C, Delacourte A (1984) Chemical cross-links of proteins by using bifunctional reagents. Int J Biochem 16(2):129–145

    Article  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  Google Scholar 

  • Honda T, Tanaka T, Yoshino T (2015) Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules 16(12):3863–3868

    Article  Google Scholar 

  • Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88:2685–2690

    Article  Google Scholar 

  • Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, Xu ZK (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B: Enzym 70:95–100

    Article  Google Scholar 

  • Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17(2):79–83

    Article  Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white-rot fungi. J Biotechnol 103:273–280

    Article  Google Scholar 

  • Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3(2):289–299

    Google Scholar 

  • Kumar M, Sharma MP (2014) Potential assessment of microalgal oils for biodiesel production: a review. J Mater Environ Sci 5(3):757–766

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  • Lee S, Jin LH, Kim JH, Han SO, Na HB, Hyeon T, Koo YM, Kim J, Lee JH (2010) b-Glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147. doi:10.1007/s00449-009-0386-x

    Article  Google Scholar 

  • Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43:7887–7916

    Article  Google Scholar 

  • Limayema A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  Google Scholar 

  • Lupoi JS, Smith EA (2011) Evaluation of nanoparticle-immobilized cellulase for improved yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108:2835–2843

    Article  Google Scholar 

  • Macario A, Verri F, Diaz U, Cormab A, Giordanoa G (2013) Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today 204:148–155

    Article  Google Scholar 

  • Mahmood T, Hussain S (2010) Nanobiotechnology for the production of biofuels from spenttea. Afr J Biotechnol 9:858–868

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhay D, Sarkar G, Mukherjee P (2005) The use of microorganism for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  Google Scholar 

  • Mateo C, Abian O, Fernandez–Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb Technol 26(7):509–515

    Article  Google Scholar 

  • Mei XY, Liu RH, Shen F, Wu HJ (2009) Optimization of fermentation conditions for the production of ethanol from stalk juice of sweet sorghum by immobilized yeast using response surface methodology. Energy Fuels 23:487

    Article  Google Scholar 

  • Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12(102):20140891

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  Google Scholar 

  • Nguyen LM (2000) Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecol Eng 16:199–221

    Article  Google Scholar 

  • Palmowski L, Muller J (1999) Influence of the size reduction of organic waste on their anaerobic digestion. In: II International Symposium on anaerobic digestion of solid waste, Barcelona, 15–17 June, pp 137–144

    Google Scholar 

  • Pan X, Fan Z, Chen W, Ding Y, Luo L, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  Google Scholar 

  • Patumsawad S (2011). 2nd Generation biofuels: technical challenge and R and D opportunity in Thailand. J Sustain Energy Environ Special Issue:47–50

    Google Scholar 

  • Pavlidis IV, Vorhaben T, Gournis D, Papadopoulos GK, Bornscheuer UT, Stamatis H (2012a) Regulation of catalytic behaviour of hydrolases through interactions with functionalised carbon-based nanomaterials. J Nanopart Res 14:842

    Article  Google Scholar 

  • Pavlidis IV, Vorhaben T, Tsoufis T, Rudolfc P, Bornscheuerb UT, Gournisd D, Stamatis H (2012b) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol 115:164–171

    Article  Google Scholar 

  • Pinto PA, Dias AA, Fraga I, Marques G, Rodrigues MAM, Colaco J, Sampaio A, Bezerra RMF (2012) Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour Technol 111:261–267

    Article  Google Scholar 

  • Pundir CS (2015) Immobilization of enzyme nanoparticles. In: Pundir CS (ed) Enzyme nanoparticles. William Andrew Publishing, Boston, CA, pp 23–32

    Chapter  Google Scholar 

  • Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31(4):215–216

    Article  Google Scholar 

  • Qiu F, Li Y, Yang D, Li X, Sun P (2011) Heterogeneous solid base nanocatalyst: preparation, characterization and application in biodiesel production. Bioresour Technol 102:4150–4156

    Article  Google Scholar 

  • Rai MK, dos Santos JS, Soler MF, Marcelino PRF, Brumano LP, Ingle AP, Gaikwad SC, Gade AK, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    Google Scholar 

  • Ren YH, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63

    Article  Google Scholar 

  • Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Transesterification by lipase entrapped in electrospunpoly(vinyl alcohol) fibers and its application to a flow-through reactor. J Biosci Bioeng 105:687–689

    Article  Google Scholar 

  • Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  Google Scholar 

  • Sivers MV, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Ionic liquids: new solvents for non-derivitized cellulose dissolution. Abstr Pap Am Chem Soc 224:U622

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid hydrolysis processes for ethanol from lignocellulosic materials. Bioresource 2:472–499

    Google Scholar 

  • Takacs E, Wojnarovits L, Foldavary C, Hargagittai P, Borsa J, Sajo I (2000) Effect of combined gamma irradiation and alkali treatments on cotton cellulose. Radiat Phys Chem 57:339–402

    Article  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fibre explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018

    Article  Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Fessner W-D, Archelas A, Demirjian DC, Furstoss R, Griengl H, Jaeger KE, Morís-Varas E, Öhrlein R, Reetz MT, Reymond JL, Schmidt M, Servi S, Shah PC, Tischer W, Wedekind F (eds) Biocatalysis – from discovery to application, vol 200. Springer, Berlin, pp 95–126

    Chapter  Google Scholar 

  • Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119

    Article  Google Scholar 

  • Tsai CT, Meyer AS (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of beta-glucosidase immobilized in calcium alginate. Molecules 19(12):19390–19406

    Article  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilization with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39

    Article  Google Scholar 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013b) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6

    Article  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  Google Scholar 

  • Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89:2267–2271

    Article  Google Scholar 

  • Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984

    Article  Google Scholar 

  • Zheng P, Wang J, Lu C, Xu Y, Sun Z (2013) Immobilized β-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose. Process Biochem 48(4):683–687

    Article  Google Scholar 

  • Zhu ZG, Sathitsuksanoh N, Vinzant T, Shell DJ, McMillan JD, Zhang Y-HP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103:715–724

    Article  Google Scholar 

  • Zhua JY, Wang GS, Pan XJ, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64:474–485

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge CNPq for their financial assistance (Process No. 401308/2014-6) and Biomed Central Limited for permitting to reproduce the figures from their publications. SCG would like to thank CNPq for providing postdoctoral research fellowship (Process No. 150745/2015-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rai, M., Ingle, A.P., Gaikwad, S., Dussán, K.J., da Silva, S.S. (2017). Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. In: Rai, M., da Silva, S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45459-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45459-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45458-0

  • Online ISBN: 978-3-319-45459-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics