Skip to main content

Potential Applications of Nanotechnology in Thermochemical Conversion of Microalgal Biomass

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options.

Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods.

Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31

    Google Scholar 

  • Alauddin ZA, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sust Energ Rev 14:2852–2862

    Article  Google Scholar 

  • Alghurabie IK, Hasan BO, Jackson B, Kosminski A, Ashman PJ (2013) Fluidized bed gasification of Kingston coal and marine microalgae in a spouted bed reactor. Chem Eng Res Des 91:1614–1624

    Article  Google Scholar 

  • Anis S, Zainal ZA (2011) Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew Sust Energy Rev 15:2355–2377

    Article  Google Scholar 

  • Aradi A, Roos J, Jao TC (2010) Nanoparticle catalyst compounds and/or volatile organometallic compounds and method of using the same for biomass gasification. US 20100299990A1

    Google Scholar 

  • Asadullah M (2014) Barriers of commercial power generation using biomass gasification gas: a review. Renew Sust Energy Rev 29:201–215

    Article  Google Scholar 

  • Babich IV, Hulst MVD, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35:3199–3207

    Article  Google Scholar 

  • Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers Manage 50:3158–3168

    Article  Google Scholar 

  • Barreiro DL, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  Google Scholar 

  • Bautista LF, Vicente G, Mendoza Á, González S, Morales V (2015) Enzymatic production of biodiesel from Nannochloropsis gaditana microalgae using immobilized lipases in mesoporous materials. Energy Fuels 29:4981–4989

    Article  Google Scholar 

  • Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1:70–76

    Article  Google Scholar 

  • Brandenberger M, Matzenberger J, Vogel F, Ludwig C (2013) Production synthetic natural gas from microalgae via supercritical water gasification: a techno-economic sensitivity analysis. Biomass Bioenergy 51:26–34

    Article  Google Scholar 

  • Brandin J, Tuner M, Odenbrand I (2010) Small scale gasification: gas engine CHP for biofuels. Swedish Energy Agency Report, pp 27–29

    Google Scholar 

  • Brennan L, Owemde P (2010) Biofuel from microalgae – a review of technologies for production, processing and extraction of biofuel and co-products. Renew Sust Energy Rev 14:557–577

    Article  Google Scholar 

  • Brown TM, Duan PG, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24:3639–3646

    Article  Google Scholar 

  • Cai J, Liu R (2008) Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics. Energy Fuels 22:675–678

    Article  MathSciNet  Google Scholar 

  • Chakinala AG, Brilman DWF, Swaaij WPMV, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  Google Scholar 

  • Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580–2586

    Article  Google Scholar 

  • Chen C, Ma X, Liu K (2011) Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy 88:3189–3196

    Article  Google Scholar 

  • Cheng J, Huang R, Yu T, Li T, Zhou J, Cen K (2014) Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresour Technol 151:415–418

    Article  Google Scholar 

  • Conesa JA, Marcilla A, Caballero JA, Font R (2001) Comments on the validity and utility of the different methods for kinetics analysis of thermogravimetric data. J Analyt Appl Pyrolysis 58–59:617–633

    Article  Google Scholar 

  • Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72

    Article  Google Scholar 

  • Demirbas A (2000) Biomass resources for energy and chemical industry. Energy Edu Sci Technol 5:21–45

    Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manage 51:2738–2749

    Article  Google Scholar 

  • Demirbas A, Arin G (2002) An over view of biomass pyrolysis. Energy Sources 24:471–482

    Article  Google Scholar 

  • Duan PG, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61

    Article  Google Scholar 

  • Duman G, AzharUddin M, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30

    Article  Google Scholar 

  • Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Analyt Appl Pyrolysis 62:331–349

    Article  Google Scholar 

  • Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci 4:323–328

    Article  Google Scholar 

  • Friedman HL (1964) Kinetics of thermal degradation of char‐forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci 6:183–195

    Google Scholar 

  • Gai C, Zhang Y, Chen WT, Zhang P, Dong Y (2013) Thermogravimetric and kinetic analysis of thermal decomposition characteristic of low-lipid microalgae. Bioresour Technol 150:139–148

    Article  Google Scholar 

  • García-Quesada JC, Marcilla A, Gilbert M (2001) Study of the pyrolysis behaviour of peroxide cross linked unplasticized PVC. J Analyt Appl Pyrolysis 58–59:651–666

    Article  Google Scholar 

  • Gomez-Barea A, Leckner B, Villanueva-Perales A, Nilsson S, Fuentes-Cano D (2013) Improving the performance of fluidized bed biomass/waste gasifiers for distributed electricity: a new three-stage gasification system. Appl Therm Eng 50:1453–1462

    Article  Google Scholar 

  • Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterization of microalgae under slow pyrolysis conditions. J Appl Energy 85:118–123

    Google Scholar 

  • Guan Q, Wei C, Ning P, Tian S, Gu J (2013) Catalytic gasification of algae Nannochloropsis sp. in sub/supercritical water. Procedia Environ Sci 18:844–848

    Article  Google Scholar 

  • Haiduc AG, Brandenberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C (2009) An integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21:529–541

    Article  Google Scholar 

  • Han J, Kim H (2008) The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sust Energy Rev 12:397–416

    Article  Google Scholar 

  • Hanaoka T, Hiasa S, Edashige Y (2013) Syngas production by CO2/O2 gasification of aquatic biomass. Fuel Process Technol 116:9–15

    Article  Google Scholar 

  • Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu K, Stork J, Debolt S (2013) Microalgae as a renewable fuel source: fast pyrolysis of Scenedesmus sp. Renew Energy 60:625–632

    Article  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  Google Scholar 

  • Hognon C, Dupont C, Grateau M, Delrue F (2014) Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements. Bioresour Technol 164:347–353

    Article  Google Scholar 

  • Hu M, Chen Z, Guo D, Liu C, Xiao B, Hu Z, Liu S (2015) Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol 177:41–50

    Article  Google Scholar 

  • Jena U, Das KC, Kastner JR (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102:6221–6229

    Article  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  Google Scholar 

  • Kassim MA, Kirtania K, De C, Cura N, Srivatsa SC, Bhattacharya S (2014) Thermogravimetric analysis and kinetic characterization of lipid-extracted Tetraselmis suecica and Chlorella sp. Algal Res 6:39–45

    Article  Google Scholar 

  • Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 49:38–48

    Article  Google Scholar 

  • Khoo HH, Koh CY, Shaik MS, Sharratt PN (2013) Bioenergy co-products derived from microalgae biomass via thermochemical conversion – life cycle energy balances and CO2 emissions. Bioresour Technol 143:298–307

    Article  Google Scholar 

  • Kim SS, Ly HV, Choi GH, Kim J, Woo HC (2012) Pyrolysis characteristics and kinetics of the alga Saccharina japonica. Bioresour Technol 123:445–451

    Article  Google Scholar 

  • Kim SS, Ly HV, Kim J, Choi JH, Woo HC (2013) Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Bioresour Technol 139:242–248

    Article  Google Scholar 

  • Kim SW, Koo BS, Lee DH (2014) A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol 162:96–102

    Article  Google Scholar 

  • Kim SS, Ly HV, Kim J, Lee EY, Wo HC (2015) Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification. Chem Eng J 263:94–199

    Article  Google Scholar 

  • Kirtania K, Joshua J, Kassim MA, Bhattacharya S (2014) Comparison of CO2 and steam gasification reactivity of algal and woody biomass chars. Fuel Process Technol 117:44–52

    Article  Google Scholar 

  • Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A (1991) Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem Eng 69:907–915

    Article  Google Scholar 

  • Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    Article  Google Scholar 

  • Lange J-P (2007) Lignocellulosic conversion: an introduction to chemistry, process and economics. Biofuels Bioprod Biorefin 1:39–48

    Article  Google Scholar 

  • Laudenslager M, Scheffer RH, Sigmund W (2010) Electrospun materials for energy harvesting, conversion and storage: a review. Pure Appl Chem 82:2137–2156

    Article  Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24:5235–5243

    Article  Google Scholar 

  • Li J, Yan R, Xiao B, Liang DT, Du L (2008) Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environ Sci Technol 42:6224–6229

    Article  Google Scholar 

  • Li D, Chen L, Zhang X, Ye N, Xing F (2011) Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy 35:1765–1772

    Article  Google Scholar 

  • Li F, Liang Z, Zheng X, Zhao W, Wu M, Wang Z (2015) Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol 158:1–13

    Article  Google Scholar 

  • Lopez-Gonzalez D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis. Energy 73:33–43

    Article  Google Scholar 

  • Luo Z, Zhou J (2012) Thermal conversion of biomass. In: Chen WY, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change mitigation. Springer Science Business Media, LLC, New York, NY, pp 1002–1037

    Google Scholar 

  • Maciejewski M (2000) Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project Ð the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta 355:145–154

    Article  Google Scholar 

  • Marcilla A, Gómez-Siurana A, Gomis C, Chápuli E, Catalá MC, Valdés FJ (2009) Characterization of microalgal species through TGA/FTIR analysis: application to nannochloropsis sp. Thermochim Acta 484:41–47

    Article  Google Scholar 

  • Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sust Energy Rev 27:11–19

    Article  Google Scholar 

  • Maria VH (2014) CO2 emissions from fuel combustion highlights. https://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2014.pdf

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  Google Scholar 

  • Meng X, de Jong W, Fu N, Verkooijen AHM (2011) Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: effects of operational conditions on product gas distribution and tar formation. Biomass Bioenergy 35:2910–2924

    Article  Google Scholar 

  • Metzler DM, Li M, Erdem A, Huang CP (2011) Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J 170:538–546

    Article  Google Scholar 

  • Min FF, Zhang MX, Chen QR (2007) Non-isothermal kinetics of pyrolysis of three kinds of fresh biomass. J China Univ Min Technol 17:105–111

    Article  Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Article  Google Scholar 

  • Nahak S, Nahak G, Pradhan I, Sahu RK (2011) Bioethanol from marine algae: a solution to global warming problem. J Appl Environ Biol Sci 1:74–80

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597

    Article  Google Scholar 

  • Nigam P, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  Google Scholar 

  • Nordgreen T (2011) Iron-based materials as tar cracking catalyst in waste gasification. Ph.D. Thesis, Department of Chemical Engineering and Technology Chemical Technology, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden

    Google Scholar 

  • Nzihou A, Stanmore B, Sharrock P (2013) A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58:305–317

    Article  Google Scholar 

  • Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80

    Article  Google Scholar 

  • Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  • Pane L, Franceshi E, Denuccio L, Carli A (2001) Applications of thermal analysis on the marine phytoplankton, Tetraselmis Suecica. J Therm Anal Calorim 66:145–154

    Article  Google Scholar 

  • Peng W, Wu Q, Tu P, Zhao N (2001) Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour Technol 80:1–7

    Article  Google Scholar 

  • Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 88:3307–3312

    Article  Google Scholar 

  • Plis P, Wilk RK (2011) Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier. Energy 36:3838–3845

    Article  Google Scholar 

  • Pugh S, McKenna R, Moolick R, Neilson DR (2010) Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng 89:1–12

    Google Scholar 

  • Raheem A, Sivasangar S, Azlina WAK, Yap YT, Danquah MK, Harun R (2015a) Thermogravimetric study of Chlorella vulgaris for syngas production. Algal Res 12:52–59

    Article  Google Scholar 

  • Raheem A, Azlina WAK, Yap YT, Danquah MK, Harun R (2015b) Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv 5:71805–71815

    Article  Google Scholar 

  • Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D (2013) Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy 102:24–31

    Article  Google Scholar 

  • Saddawi A, Jones JM, Williams A, Wojtowicz MA (2010) Kinetics of the thermal decomposition of biomass. Energy Fuels 24:1274–1282

    Article  Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energy Rev 15:2262–2289

    Article  Google Scholar 

  • Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft gasifier. Bioresour Technol 100:3127–3133

    Article  Google Scholar 

  • Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010a) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35:5406–5411

    Article  Google Scholar 

  • Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T (2010b) Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermo- gravimetric analyzer. Bioresour Technol 101:359–365

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2011) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  Google Scholar 

  • Sinag A (2012) Catalysts in thermochemical biomass conversion. In: Baskar S, Baskar C, Dhillon RS (eds) Biomass conversion. Springer, Berlin, pp 187–197

    Chapter  Google Scholar 

  • Sinag A, Yumak T, Balci V, Kruse A (2011) Catalytic hydrothermal conversion of cellulose over SnO2 and ZnO nanoparticle catalysts. J Supercrit Fluid 56:179–185

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011b) Mechanism and challenges in commercialization of algal biofuels. Bioresour Technol 102:26–34

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  Google Scholar 

  • Stenseng M, Jensen A, Dam-Johansen K (2001) Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J Analyt Appl Pyrolysis 58–59:765–780

    Article  Google Scholar 

  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2:535–541

    Article  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902

    Article  Google Scholar 

  • Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalyst for biomass gasification. Fuel Process Technol 73:155–173

    Article  Google Scholar 

  • Tahmasebi A, Kassim MA, Yu J, Bhattacharya S (2013) Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresour Technol 150:15–27

    Article  Google Scholar 

  • Thangalazhy-Gopakumara S, Adhikaria S, Chattanathana SA, Gupta RB (2012) Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour Technol 118:150–157

    Article  Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Article  Google Scholar 

  • Verdugo M, Lim LT, Rubilar M (2014) Electrospun protein concentrate fibers from microalgae residual biomass. J Polym Environ 22:373–383

    Article  Google Scholar 

  • Verma NM, Mehrotra S, Shukla A, Mishra BN (2010) Prospective of biodiesel production utilizing microalgae as the cell factories: a comprehensive discussion. Afr J Biotechnol 9:1402–1411

    Article  Google Scholar 

  • Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826

    Article  Google Scholar 

  • Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirraz-zuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  Google Scholar 

  • Wang K, Brown RC (2013) Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem 15:675–681

    Article  Google Scholar 

  • Wu KT, Tsai CJ, Chen CS, Chen HW (2012) The characteristics of torrefied microalgae. Appl Energy 100:52–57

    Article  Google Scholar 

  • Wu S, Li Y, Zhao X, Du Q, Wang Z, Xia Y, Xia L (2015) Biosorption behavior of ciprofloxacin onto Enteromorpha prolifera: isotherm and kinetic studies. Int J Phytoremed 17:957–961

    Article  Google Scholar 

  • Yang K-C, Wu K-T, Hsieh M-H, Hsu H-T, Chen C-S, Chen H-W (2013) Co-gasification of woody biomass and microalgae in a fluidized bed. J Taiwan InstChemEng 44:1027–1033

    Article  Google Scholar 

  • Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ Sci 4:4587–4595

    Article  Google Scholar 

  • Zhang JX, Chen WT, Zhang P, Luo ZY, Zhang YH (2013) Hydrothermal liquefaction of Chlorella pyrenoidosa in sub and supercritical ethanol with heterogeneous catalysts. Bioresour Technol 133:389–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razif Harun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raheem, A., Memon, L.A., Abbasi, S.A., Taufiq Yap, Y.H., Danquah, M.K., Harun, R. (2017). Potential Applications of Nanotechnology in Thermochemical Conversion of Microalgal Biomass. In: Rai, M., da Silva, S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45459-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45459-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45458-0

  • Online ISBN: 978-3-319-45459-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics