Skip to main content

Cryopreservation and Banking of Dental Stem Cells

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Abstract

Over the past decade, dental tissues have become an attractive source of mesenchymal stem cells (MSCs). Dental stem cells (DSCs) are not only able to differentiate into adipogenic, chondrogenic and osteogenic lineanges, but an increasing amount of research also pointed out their potential applicability in numerous clinical disorders, such as myocardial infarction, neurodegenerative diseases and diabetes. Together with their multilineage differentiation capacity, their easy availability from extracted third molars makes these stem cells a suitable alternative for bone marrow-derived MSCs. More importantly, DSCs appear to retain their stem cell properties following cryopreservation, a key aspect in their long-term preservation and upscale production. However, the vast number of different cryopreservation protocols makes it difficult to draw definite conclusions regarding the behavior of these stem cells. The routine application and banking of DSCs is also associated with some other pitfalls, such as interdonor variability, cell culture-induced changes and the use of animal-derived culture medium additives. Only thorough assessment of these challenges and the implementation of standardized, GMP procedures will successfully lead to better treatment options for patients who no longer benefit from current stem cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MSCs:

Mesenchymal stem cells

DSCs:

Dental stem cells

DPSCs:

Dental pulp stem cells

BM-MSCs:

Bone marrow-derived MSCs

ASCs:

Adipose tissue-derived stem cells

FSCs:

Follicle precursor cells

PDL:

Periodontal ligament

PDLSCs:

Periodontal ligament stem cells

SCAPs:

Stem cells from the apical papilla

UMSCs:

Umbilical cord MSCs

UCBC:

Umbilical cord blood cells

ERM:

Epithelial cell rests of Malassez

DePDL:

Deciduous periodontal ligament

SHEDs:

Stem cells from human exfoliated deciduous teeth

GMP:

Good Manufacturing Practice

HLA-D:

Human leukocyte antigen

vWF:

von Willebrand factor

DFO:

Deferoxamine

ISCBI:

International Stem Cell Banking Initiative

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393ā€“403

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279ā€“4295. doi:10.1091/mbc.E02-02-0105

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinsonā€™s disease. Stem Cells 24(3):781ā€“792. doi:10.1634/stemcells.2005-0330

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235ā€“242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625ā€“13630. doi:10.1073/pnas.240309797

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34(2):166ā€“171. doi:10.1016/j.joen.2007.11.021

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149ā€“155. doi:10.1016/S0140-6736(04)16627-0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. J Int Soc Matrix Biol 24(2):155ā€“165. doi:10.1016/j.matbio.2004.12.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Xiong J, Mrozik K, Gronthos S, Bartold PM (2012) Epithelial cell rests of Malassez contain unique stem cell populations capable of undergoing epithelial-mesenchymal transition. Stem Cells Dev 21(11):2012ā€“2025. doi:10.1089/scd.2011.0471

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807ā€“5812. doi:10.1073/pnas.0937635100

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Silverio KG, Rodrigues TL, Coletta RD, Benevides L, Da Silva JS, Casati MZ, Sallum EA, Nociti FH Jr (2010) Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol 81(8):1207ā€“1215. doi:10.1902/jop.2010.090729

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696ā€“704. doi:10.1359/jbmr.2003.18.4.696

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  13. Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1ā€“4):268ā€“274. doi:10.1159/000151447

    PubMedĀ  Google ScholarĀ 

  14. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513(7519):551ā€“554. doi:10.1038/nature13536

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I (2015) Dental stem cells in pulp regeneration: near future or long road ahead? Stem Cells Dev 24(14):1610ā€“1622. doi:10.1089/scd.2014.0510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143ā€“147

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315ā€“317. doi:10.1080/14653240600855905

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E (2014) Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014:457059. doi:10.1155/2014/457059

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  19. Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, Ferrari A, Bruzzesi G, De Pol A (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14. doi:10.1186/s12861-015-0065-x

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  20. Tamaki Y, Nakahara T, Ishikawa H, Sato S (2013) In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontol Soc Nippon Dent Univ 101(2):121ā€“132. doi:10.1007/s10266-012-0075-0

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Ishizaka R, Hayashi Y, Iohara K, Sugiyama M, Murakami M, Yamamoto T, Fukuta O, Nakashima M (2013) Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials 34(8):1888ā€“1897. doi:10.1016/j.biomaterials.2012.10.045

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Bakopoulou A, Leyhausen G, Volk J, Koidis P, Geurtsen W (2013) Comparative characterization of STRO-1(neg)/CD146(pos) and STRO-1(pos)/CD146(pos) apical papilla stem cells enriched with flow cytometry. Arch Oral Biol 58(10):1556ā€“1568. doi:10.1016/j.archoralbio.2013.06.018

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA (2009) Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng A 15(2):367ā€“375. doi:10.1089/ten.tea.2008.0133

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA (2008) In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. J Tissue Eng Regen Med 2(2ā€“3):117ā€“125. doi:10.1002/term.71

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12(10):2813ā€“2823. doi:10.1089/ten.2006.12.2813

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K, Sonoda Y (2010) 5-Aza-2ā€²-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol 55(5):350ā€“357. doi:10.1016/j.archoralbio.2010.03.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Song M, Kim H, Choi Y, Kim K, Chung C (2012) Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars. Korean J Orthod 42(5):249ā€“254. doi:10.4041/kjod.2012.42.5.249

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3ā€“4):105ā€“116. doi:10.1159/000099617

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377ā€“384. doi:10.1634/stemcells.22-3-377

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Takahashi M, Suzuki E, Oba S, Nishimatsu H, Kimura K, Nagano T, Nagai R, Hirata Y (2010) Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery. Am J Phys Heart Circ Phys 298(2):H415ā€“H423. doi:10.1152/ajpheart.00391.2009

    CASĀ  Google ScholarĀ 

  31. Bai K, Huang Y, Jia X, Fan Y, Wang W (2010) Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech 43(6):1176ā€“1181. doi:10.1016/j.jbiomech.2009.11.030

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  32. Chen MY, Lie PC, Li ZL, Wei X (2009) Endothelial differentiation of Whartonā€™s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 37(5):629ā€“640. doi:10.1016/j.exphem.2009.02.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I (2014) Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 143(2):181ā€“196. doi:10.1016/j.pharmthera.2014.02.013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. dā€™Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162ā€“1171. doi:10.1038/sj.cdd.4402121

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari PL, Ricci F, Pasquinelli G, Orrico C, Grossi A, Prati C, Bagnara GP (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22(3):699ā€“706

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26(9):2408ā€“2418. doi:10.1634/stemcells.2008-0393

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, Santos CF, Nor JE (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791ā€“796. doi:10.1177/0022034510368647

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Amorim BR, Silverio KG, Casati MZ, Sallum EA, Kantovitz KR, Nociti FH, Jr (2016) Neuropilin controls endothelial differentiation by mesenchymal stem cells from the periodontal ligament. J Periodontol:1ā€“14. doi:10.1902/jop.2016.150603

    Google ScholarĀ 

  39. Bakopoulou A, Kritis A, Andreadis D, Papachristou E, Leyhausen G, Koidis P, Geurtsen W, Tsiftsoglou A (2015) Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev 24(21):2496ā€“2512. doi:10.1089/scd.2015.0197

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Zhang Z, Nor F, Oh M, Cucco C, Shi S, Nor JE (2016) Wnt/beta-catenin signaling determines the vasculogenic fate of post-natal mesenchymal stem cells. Stem Cells. doi:10.1002/stem.2334

    Google ScholarĀ 

  41. Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M (2013) VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res 92(6):524ā€“531. doi:10.1177/0022034513485599

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Barros MA, Martins JF, Maria DA, Wenceslau CV, De Souza DM, Kerkis A, Camara NO, Balieiro JC, Kerkis I (2015) Immature dental pulp stem cells showed renotropic and pericyte-like properties in acute renal failure in rats. Cell Med 7(3):95ā€“108. doi:10.3727/215517914X680038

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787ā€“1795. doi:10.1634/stemcells.2007-0979

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Kiraly M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnar B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55(5):323ā€“332. doi:10.1016/j.neuint.2009.03.017

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brone B, Lambrichts I, Martens W (2014) Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. doi:10.1089/scd.2014.0117

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Osathanon T, Sawangmake C, Nowwarote N, Pavasant P (2014) Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral Dis 20(4):352ā€“358. doi:10.1111/odi.12119

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Lee JH, Um S, Song IS, Kim HY, Seo BM (2014) Neurogenic differentiation of human dental stem cells in vitro. J Korean Assoc Oral Maxillofac Surg 40(4):173ā€“180. doi:10.5125/jkaoms.2014.40.4.173

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Jarmalaviciute A, Tunaitis V, Strainiene E, Aldonyte R, Ramanavicius A, Venalis A, Magnusson KE, Pivoriunas A (2013) A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci: MN. doi:10.1007/s12031-013-0046-0

    PubMedĀ  Google ScholarĀ 

  49. Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi SB, Talebi A, Nadali F, Tanhaei S, Kiyani GA, Nematollahi M, Rabiei F, Mardani M, Bahramiyan H, Torabinejad M, Nasr-Esfahani MH, Baharvand H (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 55(2):189ā€“195. doi:10.1387/ijdb.103090nn

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19(9):1375ā€“1383. doi:10.1089/scd.2009.0258

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Morsczeck C, Vollner F, Saugspier M, Brandl C, Reichert TE, Driemel O, Schmalz G (2010) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 14(4):433ā€“440. doi:10.1007/s00784-009-0310-4

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Fortino VR, Chen RS, Pelaez D, Cheung HS (2014) Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF. J Cell Physiol 229(4):479ā€“488. doi:10.1002/jcp.24468

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Bueno C, Ramirez C, Rodriguez-Lozano FJ, Tabares-Seisdedos R, Rodenas M, Moraleda JM, Jones JR, Martinez S (2013) Human adult periodontal ligament-derived cells integrate and differentiate after implantation into the adult mammalian brain. Cell Transplant 22(11):2017ā€“2028. doi:10.3727/096368912X657305

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  54. Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I (2007) Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 357(4):917ā€“923. doi:10.1016/j.bbrc.2007.04.031

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Abe S, Hamada K, Miura M, Yamaguchi S (2012) Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biol Int 36(10):927ā€“936. doi:10.1042/CBI20110506

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  56. Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28(4):1634ā€“1643. doi:10.1096/fj.13-243980

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Li X, Gong P, Liao D (2010) In vitro neural/glial differentiation potential of periodontal ligament stem cells. AMS 6(5):678ā€“685. doi:10.5114/aoms.2010.17080

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Hilkens P, Fanton Y, Martens W, Gervois P, Struys T, Politis C, Lambrichts I, Bronckaers A (2014) Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res 12(3):778ā€“790. doi:10.1016/j.scr.2014.03.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, Martens W, Lambrichts I (2013) Angiogenic properties of human dental pulp stem cells. PLoS One 8(8), e71104. doi:10.1371/journal.pone.0071104

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Yeasmin S, Ceccarelli J, Vigen M, Carrion B, Putnam AJ, Tarle SA, Kaigler D (2014) Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells. Tissue Eng A 20(7ā€“8):1188ā€“1196. doi:10.1089/ten.TEA.2013.0512

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Yu S, Zhao Y, Ma Y, Ge L (2016) Profiling the secretome of human stem cells from dental apical papilla. Stem Cells Dev 25(6):499ā€“508. doi:10.1089/scd.2015.0298

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Yuan C, Wang P, Zhu L, Dissanayaka WL, Green DW, Tong EH, Jin L, Zhang C (2015) Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro. Tissue Eng A 21(5ā€“6):1163ā€“1172. doi:10.1089/ten.TEA.2014.0058

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C (2015) The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng A 21(3ā€“4):550ā€“563. doi:10.1089/ten.TEA.2014.0154

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Sugimura-Wakayama Y, Katagiri W, Osugi M, Kawai T, Ogata K, Sakaguchi K, Hibi H (2015) Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev 24(22):2687ā€“2699. doi:10.1089/scd.2015.0104

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Aranha AM, Zhang Z, Neiva KG, Costa CA, Hebling J, Nor JE (2010) Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod 36(10):1633ā€“1637. doi:10.1016/j.joen.2010.05.013

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  66. Vanacker J, Viswanath A, De Berdt P, Everard A, Cani PD, Bouzin C, Feron O, Diogenes A, Leprince JG, des Rieux A (2014) Hypoxia modulates the differentiation potential of stem cells of the apical papilla. J Endod 40(9):1410ā€“1418. doi:10.1016/j.joen.2014.04.008

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  67. Muller HD, Cvikl B, Gruber R, Watzek G, Agis H (2012) Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor in dental pulp-derived cells. J Endod 38(11):1498ā€“1503. doi:10.1016/j.joen.2012.08.003

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. Agis H, Watzek G, Gruber R (2012) Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor by periodontal fibroblasts. J Periodontal Res 47(2):165ā€“173. doi:10.1111/j.1600-0765.2011.01415.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Kim MK, Park HJ, Kim YD, Ryu MH, Takata T, Bae SK, Bae MK (2014) Hinokitiol increases the angiogenic potential of dental pulp cells through ERK and p38MAPK activation and hypoxia-inducible factor-1alpha (HIF-1alpha) upregulation. Arch Oral Biol 59(2):102ā€“110. doi:10.1016/j.archoralbio.2013.10.009

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238(1):120ā€“132. doi:10.1006/dbio.2001.0400

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9(10), e109305. doi:10.1371/journal.pone.0109305

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  72. Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973ā€“983. doi:10.1002/jnr.23569

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Apel C, Forlenza OV, de Paula VJ, Talib LL, Denecke B, Eduardo CP, Gattaz WF (2009) The neuroprotective effect of dental pulp cells in models of Alzheimerā€™s and Parkinsonā€™s disease. J Neural Transm 116(1):71ā€“78. doi:10.1007/s00702-008-0135-3

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19(9):2388ā€“2398. doi:10.1111/j.0953-816X.2004.03314.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  75. Nesti C, Pardini C, Barachini S, Dā€™Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F (2011) Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res 1367:94ā€“102. doi:10.1016/j.brainres.2010.09.042

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okui N, Hirata H, Nakayama H, Kurita K, Nakashima M (2016) Trophic effects of dental pulp stem cells on schwann cells in peripheral nerve regeneration. Cell Transplant 25(1):183ā€“193. doi:10.3727/096368915X688074

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  77. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726ā€“736. doi:10.1038/nri2395

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836ā€“842

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  79. Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205ā€“1220. doi:10.3109/14653249.2011.605351

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Murakami M, Horibe H, Iohara K, Hayashi Y, Osako Y, Takei Y, Nakata K, Motoyama N, Kurita K, Nakashima M (2013) The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials 34(36):9036ā€“9047. doi:10.1016/j.biomaterials.2013.08.011

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Tang R, Ding G (2011) Swine dental pulp stem cells inhibit T-cell proliferation. Transplant Proc 43(10):3955ā€“3959. doi:10.1016/j.transproceed.2011.08.102

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S (2009) Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219(3):667ā€“676. doi:10.1002/jcp.21710

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Zhao Y, Wang L, Jin Y, Shi S (2012) Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res 91(10):948ā€“954. doi:10.1177/0022034512458690

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, Colic M (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 20(4):695ā€“708. doi:10.1089/scd.2010.0145

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Ding G, Niu J, Liu Y (2015) Dental pulp stem cells suppress the proliferation of lymphocytes via transforming growth factor-beta1. Hum Cell 28(2):81ā€“90. doi:10.1007/s13577-014-0106-y

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414(6859):118ā€“121. doi:10.1038/35102181

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34(6):747ā€“754. doi:10.1038/aps.2013.50

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Nakashima M, Iohara K, Murakami M (2013) Dental pulp stem cells and regeneration. Endod Top 28(1):38ā€“50

    ArticleĀ  Google ScholarĀ 

  89. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R (2014) Cell-based therapy approaches: the hope for incurable diseases. Regen Med 9(5):649ā€“672. doi:10.2217/rme.14.35

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Wayne AS, Baird K, Egeler RM (2010) Hematopoietic stem cell transplantation for leukemia. Pediatr Clin N Am 57(1):1ā€“25. doi:10.1016/j.pcl.2009.11.005

    ArticleĀ  Google ScholarĀ 

  91. Ghieh F, Jurjus R, Ibrahim A, Geagea AG, Daouk H, El Baba B, Chams S, Matar M, Zein W, Jurjus A (2015) The use of stem cells in burn wound healing: a review. Biomed Res Int 2015:684084. doi:10.1155/2015/684084

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  92. Park YJ, Cha S, Park YS (2016) Regenerative applications using tooth derived stem cells in other than tooth regeneration: a literature review. Stem Cells Int 2016:9305986. doi:10.1155/2016/9305986

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  93. Daltoe FP, Mendonca PP, Mantesso A, Deboni MC (2014) Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies. Braz Oral Res 28: 1ā€“7

    Google ScholarĀ 

  94. Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22(2):91ā€“98

    PubMedĀ  Google ScholarĀ 

  95. Potdar PD, Jethmalani YD (2015) Human dental pulp stem cells: applications in future regenerative medicine. World J Stem Cells 7(5):839ā€“851. doi:10.4252/wjsc.v7.i5.839

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42(7):761ā€“768. doi:10.1016/j.jdent.2014.02.018

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Su-Min Lee QZ, Le AD (2014) Dental stem cells: sources and potential applications. Curr Oral Health Rep 1(1):34ā€“42

    ArticleĀ  Google ScholarĀ 

  98. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepulveda P (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638ā€“645. doi:10.1634/stemcells.2007-0484

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  99. Shen CY, Li L, Feng T, Li JR, Yu MX, Lu Q, Li H (2015) Dental pulp stem cells derived conditioned medium promotes Angiogenesis in Hindlimb Ischemia. Tissue Eng Regen Med 12(1):59ā€“68. doi:10.1007/s13770-014-9053-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  100. Fang CZ, Yang YJ, Wang QH, Yao Y, Zhang XY, He XH (2013) Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS One 8(6), e66748. doi:10.1371/journal.pone.0066748

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  101. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122(1):80ā€“90. doi:10.1172/JCI59251

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M (2013) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng A 19(1ā€“2):24ā€“29. doi:10.1089/ten.TEA.2011.0385

    ArticleĀ  CASĀ  Google ScholarĀ 

  103. Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44(2):551ā€“554. doi:10.1161/STROKEAHA.112.676759

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  104. Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H (2012) Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 21(10):1794ā€“1802. doi:10.1089/scd.2011.0408

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M (2014) Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 78:16ā€“20. doi:10.1016/j.neures.2013.10.010

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  106. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1(1):5. doi:10.1186/scrt5

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  107. Wada N, Gronthos S, Bartold PM (2013) Immunomodulatory effects of stem cells. Periodontol 2000 63(1):198ā€“216. doi:10.1111/prd.12024

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  108. Govindasamy V, Ronald VS, Abdullah AN, Nathan KR, Ab Aziz ZA, Abdullah M, Musa S, Kasim NH, Bhonde RR (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90(5):646ā€“652. doi:10.1177/0022034510396879

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Kanafi MM, Rajeshwari YB, Gupta S, Dadheech N, Nair PD, Gupta PK, Bhonde RR (2013) Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 15(10):1228ā€“1236. doi:10.1016/j.jcyt.2013.05.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Lee JS, An SY, Kwon IK, Heo JS (2014) Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage. Cell Biochem Funct 32(7):605ā€“611. doi:10.1002/cbf.3057

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Ishkitiev N, Yaegaki K, Kozhuharova A, Tanaka T, Okada M, Mitev V, Fukuda M, Imai T (2013) Pancreatic differentiation of human dental pulp CD117(+) stem cells. Regen Med 8(5):597ā€“612. doi:10.2217/rme.13.42

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Carnevale G, Riccio M, Pisciotta A, Beretti F, Maraldi T, Zavatti M, Cavallini GM, La Sala GB, Ferrari A, De Pol A (2013) In vitro differentiation into insulin-producing beta-cells of stem cells isolated from human amniotic fluid and dental pulp. Dig Liver Dis 45(8):669ā€“676. doi:10.1016/j.dld.2013.02.007

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Santā€™Anna OA, Miglino MA, Zatz M (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med 6:35. doi:10.1186/1479-5876-6-35

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  114. Yang R, Chen M, Lee CH, Yoon R, Lal S, Mao JJ (2010) Clones of ectopic stem cells in the regeneration of muscle defects in vivo. PLoS One 5(10), e13547. doi:10.1371/journal.pone.0013547

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  115. Graziano A, dā€™Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1):21ā€“26. doi:10.1007/s12015-008-9013-5

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  116. Graziano A, dā€™Aquino R, Cusella-De Angelis MG, De Francesco F, Giordano A, Laino G, Piattelli A, Traini T, De Rosa A, Papaccio G (2008) Scaffoldā€™s surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol 214(1):166ā€“172. doi:10.1002/jcp.21175

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. De Mendonca Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR (2008) Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 19(1):204ā€“210. doi:10.1097/scs.0b013e31815c8a54

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  118. Fecek C, Yao D, Kacorri A, Vasquez A, Iqbal S, Sheikh H, Svinarich DM, Perez-Cruet M, Chaudhry GR (2008) Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng A 14(8):1403ā€“1413. doi:10.1089/tea.2007.0293

    ArticleĀ  CASĀ  Google ScholarĀ 

  119. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M (2006) Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24(11):2493ā€“2503. doi:10.1634/stemcells.2006-0161

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  120. Reynolds AJ, Jahoda CA (2004) Cultured human and rat tooth papilla cells induce hair follicle regeneration and fiber growth. Differentiation 72(9ā€“10):566ā€“575. doi:10.1111/j.1432-0436.2004.07209010.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  121. Nishino Y, Ebisawa K, Yamada Y, Okabe K, Kamei Y, Ueda M (2011) Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. J Craniofac Surg 22(2):438ā€“442. doi:10.1097/SCS.0b013e318207b507

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  122. Yamamura Y, Yamada H, Sakurai T, Ide F, Inoue H, Muramatsu T, Mishima K, Hamada Y, Saito I (2013) Treatment of salivary gland hypofunction by transplantation with dental pulp cells. Arch Oral Biol 58(8):935ā€“942. doi:10.1016/j.archoralbio.2013.02.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  123. Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, Kerkis A, Cerruti H, Kerkis I (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51(3):1408ā€“1414. doi:10.1167/iovs.09-4029

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  124. Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4(3):276ā€“285. doi:10.5966/sctm.2014-0115

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  125. Huang H, Wang Y, Pan B, Yang X, Wang L, Chen J, Ma D, Yang C (2013) Simple bipolar hosts with high glass transition temperatures based on 1,8-disubstituted carbazole for efficient blue and green electrophosphorescent devices with ā€œidealā€ turn-on voltage. Chemistry 19(5):1828ā€“1834. doi:10.1002/chem.201202329

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  126. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54(12):7544ā€“7556. doi:10.1167/iovs.13-13045

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  127. Horibe H, Murakami M, Iohara K, Hayashi Y, Takeuchi N, Takei Y, Kurita K, Nakashima M (2014) Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age. PLoS One 9(5), e98553. doi:10.1371/journal.pone.0098553

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  128. Pejcic A, Kojovic D, Mirkovic D, Minic I (2013) Stem cells for periodontal regeneration. Balkan J Med Genet 16(1):7ā€“12. doi:10.2478/bjmg-2013-0012

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  129. Bansal R, Jain A, Mittal S (2015) Current overview on challenges in regenerative endodontics. J Conserv Dent 18(1):1ā€“6. doi:10.4103/0972-0707.148861

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  130. Nakashima M, Iohara K (2011) Regeneration of dental pulp by stem cells. Adv Dent Res 23(3):313ā€“319. doi:10.1177/0022034511405323

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  131. Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nor JE (2011) Dental pulp tissue engineering. Braz Dent J 22(1):3ā€“13

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  132. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16(2):605ā€“615. doi:10.1089/ten.TEA.2009.0518

    ArticleĀ  CASĀ  Google ScholarĀ 

  133. Casagrande L, Cordeiro MM, Nor SA, Nor JE (2011) Dental pulp stem cells in regenerative dentistry. Odontol Soc Nippon Dent Univ 99(1):1ā€“7. doi:10.1007/s10266-010-0154-z

    ArticleĀ  Google ScholarĀ 

  134. Mantesso A, Sharpe P (2009) Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther 9(9):1143ā€“1154. doi:10.1517/14712590903103795

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  135. Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20(12):715ā€“722. doi:10.1016/j.tcb.2010.09.012

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  136. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofacial Res 8(3):191ā€“199. doi:10.1111/j.1601-6343.2005.00331.x

    ArticleĀ  CASĀ  Google ScholarĀ 

  137. Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31(10):711ā€“718

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  138. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83(8):590ā€“595

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  139. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531ā€“535

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  140. He H, Yu J, Liu Y, Lu S, Liu H, Shi J, Jin Y (2008) Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32(7):827ā€“834. doi:10.1016/j.cellbi.2008.03.013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  141. Almushayt A, Narayanan K, Zaki AE, George A (2006) Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther 13(7):611ā€“620. doi:10.1038/sj.gt.3302687

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  142. Prescott RS, Alsanea R, Fayad MI, Johnson BR, Wenckus CS, Hao J, John AS, George A (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 34(4):421ā€“426. doi:10.1016/j.joen.2008.02.005

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  143. Tran Hle B, Doan VN (2015) Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell Tissue Bank 16(4):559ā€“568. doi:10.1007/s10561-015-9503-z

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  144. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962ā€“969. doi:10.1016/j.joen.2008.04.009

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  145. Taba M Jr, Jin Q, Sugai JV, Giannobile WV (2005) Current concepts in periodontal bioengineering. Orthod Craniofac Res 8(4):292ā€“302. doi:10.1111/j.1601-6343.2005.00352.x

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  146. Park JY, Jeon SH, Choung PH (2011) Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant 20(2):271ā€“285. doi:10.3727/096368910X519292

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  147. Trubiani O, Orsini G, Zini N, Di Iorio D, Piccirilli M, Piattelli A, Caputi S (2008) Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J Biomed Mater Res A 87(4):986ā€“993. doi:10.1002/jbm.a.31837

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  148. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26(4):1065ā€“1073. doi:10.1634/stemcells.2007-0734

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  149. He H, Yu J, Cao JEL, Wang D, Zhang H, Liu H (2011) Biocompatibility and osteogenic capacity of periodontal ligament stem cells on nHAC/PLA and HA/TCP scaffolds. J Biomater Sci Polym Ed 22(1ā€“3):179ā€“194. doi:10.1163/092050609X12587018007767

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  150. Lin Y, Gallucci GO, Buser D, Bosshardt D, Belser UC, Yelick PC (2011) Bioengineered periodontal tissue formed on titanium dental implants. J Dent Res 90(2):251ā€“256. doi:10.1177/0022034510384872

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  151. Gault P, Black A, Romette JL, Fuente F, Schroeder K, Thillou F, Brune T, Berdal A, Wurtz T (2010) Tissue-engineered ligament: implant constructs for tooth replacement. J Clin Periodontol 37(8):750ā€“758. doi:10.1111/j.1600-051X.2010.01588.x

    PubMedĀ  Google ScholarĀ 

  152. Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH, Wang BB, Huang GT, Wang S, Shi S (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16(1):20ā€“28

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  153. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20(7):1003ā€“1013. doi:10.3727/096368910X539128

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  154. Ji YM, Jeon SH, Park JY, Chung JH, Choung YH, Choung PH (2010) Dental stem cell therapy with calcium hydroxide in dental pulp capping. Tissue Eng A 16(6):1823ā€“1833. doi:10.1089/ten.TEA.2009.0054

    ArticleĀ  CASĀ  Google ScholarĀ 

  155. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1, e79. doi:10.1371/journal.pone.0000079

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  156. Nor JE (2006) Tooth regeneration in operative dentistry. Oper Dent 31(6):633ā€“642. doi:10.2341/06-000

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  157. Khorsand A, Eslaminejad MB, Arabsolghar M, Paknejad M, Ghaedi B, Rokn AR, Moslemi N, Nazarian H, Jahangir S (2013) Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J Oral Implantol 39(4):433ā€“443. doi:10.1563/AAID-JOI-D-12-00027

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  158. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M (2011) Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng A 17(15ā€“16):1911ā€“1920. doi:10.1089/ten.TEA.2010.0615

    ArticleĀ  CASĀ  Google ScholarĀ 

  159. Guo W, Gong K, Shi H, Zhu G, He Y, Ding B, Wen L, Jin Y (2012) Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 33(5):1291ā€“1302. doi:10.1016/j.biomaterials.2011.09.068

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  160. Guo W, Chen L, Gong K, Ding B, Duan Y, Jin Y (2012) Heterogeneous dental follicle cells and the regeneration of complex periodontal tissues. Tissue Eng A 18(5ā€“6):459ā€“470. doi:10.1089/ten.TEA.2011.0261

    ArticleĀ  CASĀ  Google ScholarĀ 

  161. Shen YY, Chen K, Xu N (2010) Osteogenic capacity of human deciduous dental pulp stem cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 30(1):96ā€“99

    CASĀ  PubMedĀ  Google ScholarĀ 

  162. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH (2008) Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 39(2):153ā€“160. doi:10.1007/s10735-007-9148-8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  163. Laino G, dā€™Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8):1394ā€“1402. doi:10.1359/JBMR.050325

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  164. Ueno A, Yamashita K, Miyoshi K, Horiguchi T, Ruspita I, Abe K, Noma T (2006) Soluble matrix from osteoblastic cells induces mineralization by dental pulp cells. J Med Invest 53(3ā€“4):297ā€“302

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  165. Hosoya A, Nakamura H, Ninomiya T, Hoshi K, Yoshiba K, Yoshiba N, Takahashi M, Okabe T, Sahara N, Yamada H, Kasahara E, Ozawa H (2007) Hard tissue formation in subcutaneously transplanted rat dental pulp. J Dent Res 86(5):469ā€“474

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  166. Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M, Matsuo O (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31(10):1191ā€“1197. doi:10.1016/j.cellbi.2007.04.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  167. Graziano A, dā€™Aquino R, Laino G, Proto A, Giuliano MT, Pirozzi G, De Rosa A, Di Napoli D, Papaccio G (2008) Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41(1):1ā€“11. doi:10.1111/j.1365-2184.2007.00497.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  168. dā€™Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75ā€“83

    PubMedĀ  Google ScholarĀ 

  169. Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-epsilon-caprolactone) scaffold. J Biomater Appl 28(6):922ā€“936. doi:10.1177/0885328213486705

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  170. Annibali S, Bellavia D, Ottolenghi L, Cicconetti A, Cristalli MP, Quaranta R, Pilloni A (2014) Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial ā€œcritical sizeā€ defect: preliminary data. J Biomed Mater Res B Appl Biomater 102(4):815ā€“825. doi:10.1002/jbm.b.33064

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  171. Mangano C, De Rosa A, Desiderio V, dā€™Aquino R, Piattelli A, De Francesco F, Tirino V, Mangano F, Papaccio G (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13):3543ā€“3551. doi:10.1016/j.biomaterials.2010.01.056

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  172. Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, La Sala GB, Motta A, De Pol A (2013) Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem cell Res Ther 4(3):53. doi:10.1186/scrt203

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  173. Kolind K, Kraft D, Boggild T, Duch M, Lovmand J, Pedersen FS, Bindslev DA, Bunger CE, Foss M, Besenbacher F (2014) Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomater 10(2):641ā€“650. doi:10.1016/j.actbio.2013.11.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  174. Ikeda H, Sumita Y, Ikeda M, Ikeda H, Okumura T, Sakai E, Nishimura M, Asahina I (2011) Engineering bone formation from human dental pulp- and periodontal ligament-derived cells. Ann Biomed Eng 39(1):26ā€“34. doi:10.1007/s10439-010-0115-2

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  175. Yang X, van der Kraan PM, Bian Z, Fan M, Walboomers XF, Jansen JA (2009) Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020ā€“1025. doi:10.1177/0022034509346258

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  176. Liu HC, Ling-Ling E, Wang DS, Su F, Wu X, Shi ZP, Lv Y, Wang JZ (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng A 17(19ā€“20):2417ā€“2433. doi:10.1089/ten.TEA.2010.0620

    ArticleĀ  CASĀ  Google ScholarĀ 

  177. Ge S, Zhao N, Wang L, Yu M, Liu H, Song A, Huang J, Wang G, Yang P (2012) Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. Int J Nanomedicine 7:5405ā€“5414. doi:10.2147/IJN.S36714

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  178. Su F, Liu SS, Ma JL, Wang DS, Ling-Ling E, Liu HC (2015) Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin-engineered periodontal ligament stem cells. Stem Cell Res Ther 6:22. doi:10.1186/s13287-015-0023-3

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  179. Yu BH, Zhou Q, Wang ZL (2014) Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: a comparative study in the rat. J Biomater Appl 29(2):243ā€“253. doi:10.1177/0885328214521846

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  180. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428ā€“434

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  181. Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S, Le AD, Wang SL (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88(3):249ā€“254. doi:10.1177/0022034509333804

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  182. Abe S, Yamaguchi S, Watanabe A, Hamada K, Amagasa T (2008) Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun 371(1):90ā€“93. doi:10.1016/j.bbrc.2008.04.016

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  183. Martens W, Bronckaers A, Politis C, Jacobs R, Lambrichts I (2013) Dental stem cells and their promising role in neural regeneration: an update. Clin Oral Investig 17(9):1969ā€“1983. doi:10.1007/s00784-013-1030-3

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  184. Miletich I, Sharpe PT (2004) Neural crest contribution to mammalian tooth formation. Birth Defects Res C Embryo Today 72(2):200ā€“212. doi:10.1002/bdrc.20012

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  185. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671ā€“1679

    CASĀ  PubMedĀ  Google ScholarĀ 

  186. Ibarretxe G, Crende O, Aurrekoetxea M, Garcia-Murga V, Etxaniz J, Unda F (2012) Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem Cells Int 2012:103503. doi:10.1155/2012/103503

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  187. Graham A, Begbie J, McGonnell I (2004) Significance of the cranial neural crest. Dev Dyn 229(1):5ā€“13. doi:10.1002/dvdy.10442

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  188. Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA (2009) Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 27(9):2229ā€“2237. doi:10.1002/stem.138

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  189. Kiraly M, Kadar K, Horvathy DB, Nardai P, Racz GZ, Lacza Z, Varga G, Gerber G (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59(3):371ā€“381. doi:10.1016/j.neuint.2011.01.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  190. Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, Field J, Hamilton-Bruce MA, Warming S, Manavis J, Vink R, Gronthos S, Koblar SA (2012) Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 1(3):177ā€“187. doi:10.5966/sctm.2011-0039

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  191. Yang KL, Chen MF, Liao CH, Pang CY, Lin PY (2009) A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy. Cytotherapy 11(5):606ā€“617. doi:10.1080/14653240902806994

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  192. Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M (2011) Dental pulp-derived CD31(-)/CD146(-) side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng A 17(9ā€“10):1303ā€“1311. doi:10.1089/ten.TEA.2010.0306

    ArticleĀ  CASĀ  Google ScholarĀ 

  193. Nagpal A, Kremer KL, Hamilton-Bruce MA, Kaidonis X, Milton AG, Levi C, Shi S, Carey L, Hillier S, Rose M, Zacest A, Takhar P, Koblar SA (2016) TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke. Int J Stroke. doi:10.1177/1747493016641111

    PubMedĀ  Google ScholarĀ 

  194. Tseng LS, Chen SH, Lin MT, Lin YC (2015) Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant 24(5):921ā€“937. doi:10.3727/096368914X678580

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  195. Li X, Yang C, Li L, Xiong J, Xie L, Yang B, Yu M, Feng L, Jiang Z, Guo W, Tian W (2015) A therapeutic strategy for spinal cord defect: human dental follicle cells combined with aligned PCL/PLGA electrospun material. Biomed Res Int 2015:197183. doi:10.1155/2015/197183

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  196. De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, Deumens R, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94(11):1575ā€“1581. doi:10.1177/0022034515604612

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  197. De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, Deumens R, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94(11):1575ā€“1581. doi:10.1177/0022034515604612

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  198. Huang AH, Snyder BR, Cheng PH, Chan AW (2008) Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26(10):2654ā€“2663. doi:10.1634/stemcells.2008-0285

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  199. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T (2011) PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 5(10):823ā€“830. doi:10.1002/term.387

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  200. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H (2008) Tubulation with dental pulp cells promotes facial nerve regeneration in rats. Tissue Eng A 14(7):1141ā€“1147. doi:10.1089/ten.tea.2007.0157

    ArticleĀ  CASĀ  Google ScholarĀ 

  201. Sasaki R, Matsumine H, Watanabe Y, Takeuchi Y, Yamato M, Okano T, Miyata M, Ando T (2014) Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats. Plast Reconstr Surg 134(5):970ā€“978. doi:10.1097/PRS.0000000000000602

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  202. Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Utunomiya S, Nakamura H, Matsushita K, Nakashima M (2013) A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2(7):521ā€“533. doi:10.5966/sctm.2012-0132

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  203. Kumar A, Bhattacharyya S, Rattan V (2015) Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank 16(4):513ā€“522. doi:10.1007/s10561-015-9498-5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  204. Davies OG, Smith AJ, Cooper PR, Shelton RM, Scheven BA (2014) The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology 69(2):342ā€“347. doi:10.1016/j.cryobiol.2014.08.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  205. Baust JM, Corwin WL, VanBuskirk R, Baust JG (2015) Biobanking: the future of cell preservation strategies. Adv Exp Med Biol 864:37ā€“53. doi:10.1007/978-3-319-20579-3_4

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  206. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71(2):181ā€“197. doi:10.1016/j.cryobiol.2015.07.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  207. Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71(2):345ā€“355

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  208. Zhurova M, Woods EJ, Acker JP (2010) Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage. Cryobiology 61(1):133ā€“141. doi:10.1016/j.cryobiol.2010.06.007

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  209. Fleming KK, Hubel A (2006) Cryopreservation of hematopoietic and non-hematopoietic stem cells. Transfus Apher Sci 34(3):309ā€“315. doi:10.1016/j.transci.2005.11.012

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  210. Papaccio G, Graziano A, dā€™Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208(2):319ā€“325. doi:10.1002/jcp.20667

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  211. Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM, Hockema JJ, Woods EJ, Goebel WS (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14(2):149ā€“156. doi:10.1089/ten.tec.2008.0031

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  212. Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS (2009) Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 59(2):150ā€“157. doi:10.1016/j.cryobiol.2009.06.005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  213. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S (2010) Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol 223(2):415ā€“422. doi:10.1002/jcp.22050

    CASĀ  PubMedĀ  Google ScholarĀ 

  214. Vasconcelos RG, Ribeiro RA, Vasconcelos MG, Lima KC, Barboza CA (2012) In vitro comparative analysis of cryopreservation of undifferentiated mesenchymal cells derived from human periodontal ligament. Cell Tissue Bank 13(3):461ā€“469. doi:10.1007/s10561-011-9271-3

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  215. Harel A (2013) Cryopreservation and cell banking for autologous mesenchymal stem cell-based therapies. Cell Tissue Transpl Ther 5:1ā€“7. doi:10.4137/CTTT.S11249

    ArticleĀ  Google ScholarĀ 

  216. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfusion Med Hemother 38(2):107ā€“123. doi:10.1159/000326623

    ArticleĀ  Google ScholarĀ 

  217. Rowley SD, Feng Z, Yadock D, Holmberg L, Macleod B, Heimfeld S (1999) Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy 1(6):439ā€“446. doi:10.1080/0032472031000141303

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  218. Demirci S, Dogan A, Sisli B, Sahin F (2014) Boron increases the cell viability of mesenchymal stem cells after long-term cryopreservation. Cryobiology 68(1):139ā€“146. doi:10.1016/j.cryobiol.2014.01.010

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  219. Umemura E, Yamada Y, Nakamura S, Ito K, Hara K, Ueda M (2011) Viable cryopreserving tissue-engineered cell-biomaterial for cell banking therapy in an effective cryoprotectant. Tissue Eng Part C Methods 17(8):799ā€“807. doi:10.1089/ten.tec.2011.0003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  220. Ducret M, Fabre H, Farges JC, Degoul O, Atzeni G, McGuckin C, Forraz N, Mallein-Gerin F, Perrier-Groult E (2015) Production of human dental pulp cells with a medicinal manufacturing approach. J Endod 41(9):1492ā€“1499. doi:10.1016/j.joen.2015.05.017

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  221. Lee SY, Huang GW, Shiung JN, Huang YH, Jeng JH, Kuo TF, Yang JC, Yang WC (2012) Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs 196(1):23ā€“33. doi:10.1159/000331247

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  222. Kamada H, Kaku M, Kawata T, Koseki H, Abedini S, Kojima S, Sumi A, Motokawa M, Fujita T, Ohtani J, Ohwada N, Tanne K (2011) In-vitro and in-vivo study of periodontal ligament cryopreserved with a magnetic field. Am J Orthod Dentofac Orthop 140(6):799ā€“805. doi:10.1016/j.ajodo.2011.04.024

    ArticleĀ  Google ScholarĀ 

  223. Amos MJ, Day P, Littlewood SJ (2009) Autotransplantation of teeth: an overview. Dent Update 36(2):102ā€“104, 107ā€“110, 113

    PubMedĀ  Google ScholarĀ 

  224. Kaku M, Kamada H, Kawata T, Koseki H, Abedini S, Kojima S, Motokawa M, Fujita T, Ohtani J, Tsuka N, Matsuda Y, Sunagawa H, Hernandes RA, Ohwada N, Tanne K (2010) Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology 61(1):73ā€“78. doi:10.1016/j.cryobiol.2010.05.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  225. Abedini S, Kaku M, Kawata T, Koseki H, Kojima S, Sumi H, Motokawa M, Fujita T, Ohtani J, Ohwada N, Tanne K (2011) Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology 62(3):181ā€“187. doi:10.1016/j.cryobiol.2011.03.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  226. Oh YH, Che ZM, Hong JC, Lee EJ, Lee SJ, Kim J (2005) Cryopreservation of human teeth for future organization of a tooth bank ā€“ a preliminary study. Cryobiology 51(3):322ā€“329. doi:10.1016/j.cryobiol.2005.08.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  227. Min KS, Lee HW, Lee HS, Lee JH, Park SH (2010) Comparison of gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from teeth cryopreserved for 1 week. Cryobiology 60(3):326ā€“330. doi:10.1016/j.cryobiol.2010.02.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  228. Gioventu S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E, Santoro F, Rebulla P (2012) A novel method for banking dental pulp stem cells. Transfus Apher Sci 47(2):199ā€“206. doi:10.1016/j.transci.2012.06.005

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  229. Temmerman L, Beele H, Dermaut LR, Van Maele G, De Pauw GA (2010) Influence of cryopreservation on the pulpal tissue of immature third molars in vitro. Cell Tissue Bank 11(3):281ā€“289. doi:10.1007/s10561-009-9148-x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  230. Malekfar A, Valli KS, Kanafi MM, Bhonde RR (2016) Isolation and characterization of human dental pulp stem cells from cryopreserved pulp tissues obtained from teeth with irreversible pulpitis. J Endod 42(1):76ā€“81. doi:10.1016/j.joen.2015.10.001

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  231. Ji EH, Song JS, Kim SO, Jeon M, Choi BJ, Lee JH (2014) Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 15(1):67ā€“74. doi:10.1007/s10561-013-9375-z

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  232. Lindemann D, Werle SB, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L (2014) Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 59(9):970ā€“976. doi:10.1016/j.archoralbio.2014.04.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  233. Bressan WS, Lindemann D, Machado J, Pranke P, Casagrande L (2014) Serum-containing medium effect on isolation rate of dental pulp cells from cryopreserved intact deciduous teeth. J Clin Pediatr Dent 38(4):345ā€“348

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  234. Park BW, Jang SJ, Byun JH, Kang YH, Choi MJ, Park WU, Lee WJ, Rho GJ (2014) Cryopreservation of human dental follicle tissue for use as a resource of autologous mesenchymal stem cells. J Tissue Eng Regen Med. doi:10.1002/term.1945

    Google ScholarĀ 

  235. Kang YH, Lee HJ, Jang SJ, Byun JH, Lee JS, Lee HC, Park WU, Lee JH, Rho GJ, Park BW (2015) Immunomodulatory properties and in vivo osteogenesis of human dental stem cells from fresh and cryopreserved dental follicles. Differentiation 90(1ā€“3):48ā€“58. doi:10.1016/j.diff.2015.10.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  236. Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84(10):907ā€“912

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  237. Crook JM, Hei D, Stacey G (2010) The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. In Vitro Cell Dev Biol Animal 46(3ā€“4):169ā€“172. doi:10.1007/s11626-010-9301-7

    ArticleĀ  Google ScholarĀ 

  238. ISSCR (2008) Guidelines for the clinical translation of stem cells

    Google ScholarĀ 

  239. Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C, Clarke D, Fong T, Karnieli O, Niss K, Vanā€™t Hof W, Wagey R (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2(11):871ā€“883. doi:10.5966/sctm.2013-0050

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  240. Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4(1):20ā€“26. doi:10.1016/j.stem.2008.11.012

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  241. Alici E, Blomberg P (2010) GMP facilities for manufacturing of advanced therapy medicinal products for clinical trials: an overview for clinical researchers. Curr Gene Ther 10(6):508ā€“515

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  242. Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66. doi:10.1186/scrt217

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  243. Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T, Lang P, Muller I, Renner M, Malcherek G, Saffrich R, Buss EC, Horn P, Rojewski M, Schmitt A, Ho AD, Sanzenbacher R, Schmitt M (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128ā€“139. doi:10.1016/j.jcyt.2014.04.002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  244. Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Alliot-Licht B, Mallein-Gerin F, Perrier-Groult E, Farges JC (2015) Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Front Physiol 6:213. doi:10.3389/fphys.2015.00213

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  245. Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K (2008) Characterization of dental pulp stem cells of human tooth germs. J Dent Res 87(7):676ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  246. Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis C, Lambrichts I, Bronckaers A (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353(1):65ā€“78. doi:10.1007/s00441-013-1630-x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  247. Alt E, Yan Y, Gehmert S, Song YH, Altman A, Gehmert S, Vykoukal D, Bai X (2011) Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 103(4):197ā€“208. doi:10.1042/BC20100117

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  248. Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408ā€“1419. doi:10.1002/stem.1681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  249. Bansal R, Jain A (2015) Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 6(1):29ā€“34. doi:10.4103/0976-9668.149074

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  250. Gottipamula S, Muttigi MS, Kolkundkar U, Seetharam RN (2013) Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif 46(6):608ā€“627. doi:10.1111/cpr.12063

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  251. Halme DG, Kessler DA (2006) FDA regulation of stem-cell-based therapies. N Engl J Med 355(16):1730ā€“1735. doi:10.1056/NEJMhpr063086

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  252. Hemeda H, Giebel B, Wagner W (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16(2):170ā€“180. doi:10.1016/j.jcyt.2013.11.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  253. van der Valk J, Mellor D, Brands R, Fischer R, Gruber F, Gstraunthaler G, Hellebrekers L, Hyllner J, Jonker FH, Prieto P, Thalen M, Baumans V (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro: Int J Published Assoc BIBRA 18(1):1ā€“12

    ArticleĀ  CASĀ  Google ScholarĀ 

  254. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25(7):1603ā€“1609. doi:10.1634/stemcells.2007-0127

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  255. Tarle SA, Shi S, Kaigler D (2011) Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J Cell Physiol 226(1):66ā€“73. doi:10.1002/jcp.22304

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  256. Hirata TM, Ishkitiev N, Yaegaki K, Calenic B, Ishikawa H, Nakahara T, Mitev V, Tanaka T, Haapasalo M (2010) Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media. J Endod 36(7):1139ā€“1144. doi:10.1016/j.joen.2010.03.002

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  257. Khanna-Jain RVS, Vuorinen A, Sandor GK, Suuronen R, Mannerstrom B, Miettinen S (2012) Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/xeno-free culture media. J Stem Cell Res Ther 2(4)

    Google ScholarĀ 

  258. Morsczeck C, Ernst W, Florian C, Reichert TE, Proff P, Bauer R, Muller-Richter U, Driemel O (2008) Gene expression of nestin, collagen type I and type III in human dental follicle cells after cultivation in serum-free medium. Oral Maxillofac Surg 12(2):89ā€“92. doi:10.1007/s10006-008-0111-y

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  259. Okamoto T, Yatsuzuka N, Tanaka Y, Kan M, Yamanaka T, Sakamoto A, Takata T, Akagawa Y, Sato GH, Sato JD, Takada K (1997) Growth and differentiation of periodontal ligament-derived cells in serum-free defined culture. In Vitro Cell Dev Biol Animal 33(4):302ā€“309

    ArticleĀ  CASĀ  Google ScholarĀ 

  260. Bonnamain V, Thinard R, Sergent-Tanguy S, Huet P, Bienvenu G, Naveilhan P, Farges JC, Alliot-Licht B (2013) Human dental pulp stem cells cultured in serum-free supplemented medium. Front Physiol 4:357. doi:10.3389/fphys.2013.00357

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  261. Xiao L, Tsutsui T (2013) Characterization of human dental pulp cells-derived spheroids in serum-free medium: stem cells in the core. J Cell Biochem 114(11):2624ā€“2636. doi:10.1002/jcb.24610

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  262. Karbanova J, Soukup T, Suchanek J, Pytlik R, Corbeil D, Mokry J (2011) Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193(6):344ā€“365. doi:10.1159/000321160

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  263. Bernardo ME, Avanzini MA, Perotti C, Cometa AM, Moretta A, Lenta E, Del Fante C, Novara F, de Silvestri A, Amendola G, Zuffardi O, Maccario R, Locatelli F (2007) Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute. J Cell Physiol 211(1):121ā€“130. doi:10.1002/jcp.20911

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  264. Bieback K (2013) Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40(5):326ā€“335. doi:10.1159/000354061

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  265. Burnouf T, Strunk D, Koh MB, Schallmoser K (2016) Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 76:371ā€“387. doi:10.1016/j.biomaterials.2015.10.065

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  266. Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M, Zain RB, Kasim NH, Musa S, Bhonde RR (2011) Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications. Cytotherapy 13(10):1221ā€“1233. doi:10.3109/14653249.2011.602337

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  267. Iudicone P, Fioravanti D, Bonanno G, Miceli M, Lavorino C, Totta P, Frati L, Nuti M, Pierelli L (2014) Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells. J Transl Med 12:28. doi:10.1186/1479-5876-12-28

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  268. Pisciolaro RL, Duailibi MT, Novo NF, Juliano Y, Pallos D, Yelick PC, Vacanti JP, Ferreira LM, Duailibi SE (2015) Tooth tissue engineering: the importance of blood products as a supplement in tissue culture medium for human pulp dental stem cells. Tissue Eng A 21(21ā€“22):2639ā€“2648. doi:10.1089/ten.TEA.2014.0617

    ArticleĀ  CASĀ  Google ScholarĀ 

  269. Rauch C, Feifel E, Amann EM, Spotl HP, Schennach H, Pfaller W, Gstraunthaler G (2011) Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. Altex 28(4):305ā€“316

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  270. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23(9):1357ā€“1366. doi:10.1634/stemcells.2005-0094

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  271. Shih DT, Burnouf T (2015) Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. New Biotechnol 32(1):199ā€“211. doi:10.1016/j.nbt.2014.06.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  272. Cardaropoli DG, L. (2007) The influence of orthodontic movement on periodontal tissues level. Semin Orthod 13(4):234ā€“245

    ArticleĀ  Google ScholarĀ 

  273. Chen Y, Mohammed A, Oubaidin M, Evans CA, Zhou X, Luan X, Diekwisch TG, Atsawasuwan P (2015) Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene 566(1):13ā€“17. doi:10.1016/j.gene.2015.03.055

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  274. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129(4):469. doi:10.1016/j.ajodo.2005.10.007, e461ā€“432

    ArticleĀ  Google ScholarĀ 

  275. Meeran NA (2013) Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol 17(1):16ā€“20. doi:10.4103/0972-124X.107468

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  276. Iohara K, Murakami M, Nakata K, Nakashima M (2014) Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol 52:39ā€“45. doi:10.1016/j.exger.2014.01.020

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  277. Feng X, Xing J, Feng G, Huang D, Lu X, Liu S, Tan W, Li L, Gu Z (2014) p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response. Mech Ageing Dev 141ā€“142:46ā€“55. doi:10.1016/j.mad.2014.09.004

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  278. Lossdorfer S, Kraus D, Jager A (2010) Aging affects the phenotypic characteristics of human periodontal ligament cells and the cellular response to hormonal stimulation in vitro. J Periodontal Res 45(6):764ā€“771. doi:10.1111/j.1600-0765.2010.01297.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  279. Ma D, Ma Z, Zhang X, Wang W, Yang Z, Zhang M, Wu G, Lu W, Deng Z, Jin Y (2009) Effect of age and extrinsic microenvironment on the proliferation and osteogenic differentiation of rat dental pulp stem cells in vitro. J Endod 35(11):1546ā€“1553. doi:10.1016/j.joen.2009.07.016

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  280. Zhang J, An Y, Gao LN, Zhang YJ, Jin Y, Chen FM (2012) The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 33(29):6974ā€“6986. doi:10.1016/j.biomaterials.2012.06.032

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  281. Atari M, Gil-Recio C, Fabregat M, Garcia-Fernandez D, Barajas M, Carrasco MA, Jung HS, Alfaro FH, Casals N, Prosper F, Ferres-Padro E, Giner L (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125(Pt 14):3343ā€“3356. doi:10.1242/jcs.096537

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  282. Kellner M, Steindorff MM, Strempel JF, Winkel A, Kuhnel MP, Stiesch M (2014) Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol 59(6):559ā€“567. doi:10.1016/j.archoralbio.2014.02.014

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  283. James JA, Sayers NM, Drucker DB, Hull PS (1999) Effects of tobacco products on the attachment and growth of periodontal ligament fibroblasts. J Periodontol 70(5):518ā€“525. doi:10.1902/jop.1999.70.5.518

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  284. Kim SY, Kang KL, Lee JC, Heo JS (2012) Nicotinic acetylcholine receptor alpha7 and beta4 subunits contribute nicotine-induced apoptosis in periodontal ligament stem cells. Mol Cells 33(4):343ā€“350. doi:10.1007/s10059-012-2172-x

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  285. Ng TK, Carballosa CM, Pelaez D, Wong HK, Choy KW, Pang CP, Cheung HS (2013) Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential. Stem Cells Dev 22(5):781ā€“790. doi:10.1089/scd.2012.0434

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  286. Yanagita M, Kashiwagi Y, Kobayashi R, Tomoeda M, Shimabukuro Y, Murakami S (2008) Nicotine inhibits mineralization of human dental pulp cells. J Endod 34(9):1061ā€“1065. doi:10.1016/j.joen.2008.06.005

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  287. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ (2010) Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 38(9):687ā€“697. doi:10.1016/j.jdent.2010.05.016

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  288. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GT (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617ā€“631. doi:10.2217/rme.10.30

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  289. Dokic J, Tomic S, Cerovic S, Todorovic V, Rudolf R, Colic M (2012) Characterization and immunosuppressive properties of mesenchymal stem cells from periapical lesions. J Clin Periodontol 39(9):807ā€“816. doi:10.1111/j.1600-051X.2012.01917.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  290. Liu Y, Gao Y, Zhan X, Cui L, Xu S, Ma D, Yue J, Wu B, Gao J (2014) TLR4 activation by lipopolysaccharide and Streptococcus mutans induces differential regulation of proliferation and migration in human dental pulp stem cells. J Endod 40(9):1375ā€“1381. doi:10.1016/j.joen.2014.03.015

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  291. Ma D, Cui L, Gao J, Yan W, Liu Y, Xu S, Wu B (2014) Proteomic analysis of mesenchymal stem cells from normal and deep carious dental pulp. PLoS One 9(5), e97026. doi:10.1371/journal.pone.0097026

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  292. Ma D, Gao J, Yue J, Yan W, Fang F, Wu B (2012) Changes in proliferation and osteogenic differentiation of stem cells from deep caries in vitro. J Endod 38(6):796ā€“802. doi:10.1016/j.joen.2012.02.014

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  293. Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18(9):2103ā€“2112. doi:10.1007/s00784-014-1207-4

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  294. Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva IC, Pocas-Fonseca MJ, Azevedo RB (2012) Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J 45(12):1080ā€“1090. doi:10.1111/j.1365-2591.2012.02068.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  295. Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, Xiao M, Chen FM, Yu Q (2014) Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials 35(35):9459ā€“9472. doi:10.1016/j.biomaterials.2014.08.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  296. Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, Casagrande L (2016) Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig 20(1):75ā€“81. doi:10.1007/s00784-015-1477-5

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  297. Havelek R, Soukup T, Cmielova J, Seifrtova M, Suchanek J, Vavrova J, Mokry J, Muthna D, Rezacova M (2013) Ionizing radiation induces senescence and differentiation of human dental pulp stem cells. Folia Biol 59(5):188ā€“197

    CASĀ  Google ScholarĀ 

  298. Muthna D, Soukup T, Vavrova J, Mokry J, Cmielova J, Visek B, Jiroutova A, Havelek R, Suchanek J, Filip S, English D, Rezacova M (2010) Irradiation of adult human dental pulp stem cells provokes activation of p53, cell cycle arrest, and senescence but not apoptosis. Stem Cells Dev 19(12):1855ā€“1862. doi:10.1089/scd.2009.0449

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  299. Abe S, Hamada K, Yamaguchi S, Amagasa T, Miura M (2011) Characterization of the radioresponse of human apical papilla-derived cells. Stem Cell Res Ther 2(1):2. doi:10.1186/scrt43

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  300. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773ā€“785. doi:10.1038/nbt.2958

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  301. Jung JW, Lee JS, Cho DW (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6:21685. doi:10.1038/srep21685

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  302. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312ā€“319. doi:10.1038/nbt.3413

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hilkens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hilkens, P. et al. (2016). Cryopreservation and Banking of Dental Stem Cells. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_17

Download citation

Publish with us

Policies and ethics