Skip to main content

Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions

  • Chapter
  • First Online:
Book cover Biobanking and Cryopreservation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 951))

Abstract

In recent years, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a vital cell source for in vitro modeling of genetic cardiovascular disorders, drug screening, and in vivo cardiac regeneration research. Looking forward, the ability to efficiently cryopreserve hPSC-CMs without compromising their normal biochemical and physiologic functions will dramatically facilitate their various biomedical applications. Although working protocols for freezing, storing, and thawing hPSC-CMs have been established, the question remains as to whether they are optimal. In this chapter, we discuss our current understanding of cryopreservation appertaining to hPSC-CMs, and proffer key questions regarding the mechanical, contractile, and regenerative properties of cryopreserved hPSC-CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

hPSC-CMs:

Human pluripotent stem cell-derived cardiomyocytes

CPA:

Cryoprotective agent

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

ROCK:

Rho-associated kinase

References

  1. Turnbull IC, Lieu DK, Li RA, Costa KD (2012) Cardiac tissue engineering using human stem cell-derived cardiomyocytes for disease modeling and drug discovery. Drug Discov Today Dis Models 9(4):e219–e227

    Article  Google Scholar 

  2. Feric NT, Radisic M (2016) Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 96:110–134

    Article  CAS  PubMed  Google Scholar 

  3. Birket Matthew J, Casini S, Kosmidis G, Elliott David A, Gerencser Akos A, Baartscheer A, Schumacher C, Mastroberardino Pier G, Elefanty Andrew G, Stanley Ed G, Mummery CL (2013) PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function. Stem Cell Reports 1(6):560–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, Orlova VV, Devalla HD, Schwach V, Bellin M, Passier R, Mummery CL (2015) Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 33(9):970–979

    Article  CAS  PubMed  Google Scholar 

  5. Lui KO, Stachel MW, Lieu DK, Li RA, Bu L (2012) Induced pluripotent stem cells as a disease model for studying inherited arrhythmias: promises and hurdles. Drug Discov Today Dis Models 9(4):e199–e207

    Article  Google Scholar 

  6. Li RA (2012) The use of induced pluripotent stem cells for disease modeling: what are the promises and hurdles? Drug Discov Today Dis Models 9(4):e143–e145

    Article  Google Scholar 

  7. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL (2011) Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 17(9):475–484

    Article  CAS  PubMed  Google Scholar 

  8. Li RK, Mickle DA, Weisel RD, Carson S, Omar SA, Tumiati LC, Wilson GJ, Williams WG (1996) Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging. Cardiovasc Res 32(2):362–373

    Article  CAS  PubMed  Google Scholar 

  9. Lieu DK, Turnbull IC, Costa KD, Li RA (2012) Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. Drug Discov Today Dis Models 9(4):e209–e217

    Article  Google Scholar 

  10. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229

    Article  CAS  PubMed  Google Scholar 

  11. Lahti AL, Kujala VJ, Chapman H, Koivisto A-P, Pekkanen-Mattila M, Kerkelä E, Hyttinen J, Kontula K, Swan H, Conklin BR, Yamanaka S, Silvennoinen O, Aalto-Setälä K (2012) Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech 5(2):220–230

    Article  CAS  PubMed  Google Scholar 

  12. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Seyfarth M, Sinnecker D, Schömig A, Laugwitz K-L (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    Article  CAS  PubMed  Google Scholar 

  13. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung CB, Moretti A, Mederos y Schnitzler M, Lop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz KL (2012) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 4(3):180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Itzhaki I, Maizels L, Huber I, Gepstein A, Arbel G, Caspi O, Miller L, Belhassen B, Nof E, Glikson M, Gepstein L (2012) Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol 60(11):990–1000

    Article  CAS  PubMed  Google Scholar 

  16. Chen IY, Matsa E, Wu JC (2016) Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. doi:10.1038/nrcardio.2016.36

    Google Scholar 

  17. Mandenius CF, Steel D, Noor F, Meyer T, Heinzle E, Asp J, Arain S, Kraushaar U, Bremer S, Class R, Sartipy P (2011) Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 31(3):191–205

    Article  CAS  PubMed  Google Scholar 

  18. Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM, Wu JC (2013) Screening drug-induced arrhythmia using human induced pluripotent stem cell–derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128(11 suppl 1):S3–S13

    Article  CAS  PubMed  Google Scholar 

  19. MacDonald JS, Robertson RT (2009) Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci 110(1):40–46

    Article  CAS  PubMed  Google Scholar 

  20. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2(6):439–447

    Article  CAS  PubMed  Google Scholar 

  21. Frothingham R (2001) Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin. Pharmacotherapy 21(12):1468–1472

    Article  CAS  PubMed  Google Scholar 

  22. Laustriat D, Gide J, Peschanski M (2010) Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem Soc Trans 38(4):1051–1057

    Article  CAS  PubMed  Google Scholar 

  23. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018

    Article  PubMed  Google Scholar 

  24. Lin Z, Pu WT (2014) Strategies for cardiac regeneration and repair. Sci Transl Med 6(239):239rv1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perin EC, Borow KM, Silva GV, DeMaria AN, Marroquin OC, Huang PP, Traverse JH, Krum H, Skerrett D, Zheng Y, Willerson JT, Itescu S, Henry TD (2015) A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res 117(6):576–584

    Article  CAS  PubMed  Google Scholar 

  26. Kuraitis D, Suuronen EJ, Sellke FW, Ruel M (2010) The future of regenerating the myocardium. Curr Opin Cardiol 25(6):575–582

    Article  PubMed  Google Scholar 

  27. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  CAS  PubMed  Google Scholar 

  28. Chong JJH, Murry CE (2014) Cardiac regeneration using pluripotent stem cells—progression to large animal models. Stem Cell Res 13(3):654–665, Part B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893

    Article  PubMed  Google Scholar 

  31. van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, den Ouden K, Ward-van Oostwaard D, Korving J, Tertoolen LG, van Echteld CJ, Doevendans PA, Mummery CL (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1(1):9–24

    Article  PubMed  Google Scholar 

  32. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167(3):663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rucker-Martin C, Barbry P, Bel A, Bruneval P, Cowan C, Pouly J, Mitalipov S, Gouadon E, Binder P, Hagege A, Desnos M, Renaud JF, Menasche P, Puceat M (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120(4):1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  CAS  PubMed  Google Scholar 

  36. Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785

    Article  PubMed  Google Scholar 

  37. Menasche P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, Bellamy V, Farouz Y, Pouly J, Damour O, Perier MC, Desnos M, Hagege A, Agbulut O, Bruneval P, Tachdjian G, Trouvin JH, Larghero J (2015) Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J 36(12):743–750

    Article  PubMed  Google Scholar 

  38. Zhu W-Z, Van Biber B, Laflamme MA (2011) Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol (Clifton, NJ) 767:419–431

    Article  CAS  Google Scholar 

  39. Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22(14):1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31(5):829–837

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114(3):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA (2015) Proteomic analysis of human pluripotent stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. Circ Cardiovasc Genet 8(3):427–436

    Article  CAS  PubMed  Google Scholar 

  43. Kim YY, Ku SY, Liu HC, Cho HJ, Oh SK, Moon SY, Choi YM (2011) Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod Sci 18(3):252–260

    Article  CAS  PubMed  Google Scholar 

  44. Hwang HS, Kryshtal DO, Feaster TK, Sanchez-Freire V, Zhang J, Kamp TJ, Hong CC, Wu JC, Knollmann BC (2015) Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 85:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, O’Sullivan C, Laflamme MA, Zhu WZ, Van Biber B, Hegerova L, Yang J, Delavan-Boorsma K, Davies A, Lebkowski J, Gold JD (2011) Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med 6(1):53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heng BC (2009) Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue Cell 41(5):376–380

    Article  CAS  PubMed  Google Scholar 

  47. Martin-Ibanez R, Unger C, Stromberg A, Baker D, Canals JM, Hovatta O (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 23(12):2744–2754

    Article  CAS  PubMed  Google Scholar 

  48. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15(2):365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gerbin KA, Yang X, Murry CE, Coulombe KL (2015) Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One 10(7):e0131446

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gosden RG (2014) General principles of cryopreservation. Methods Mol Biol 1154:261–268

    Article  PubMed  Google Scholar 

  51. Hubel A (1997) Parameters of cell freezing: implications for the cryopreservation of stem cells. Transfus Med Rev 11(3):224–233

    Article  CAS  PubMed  Google Scholar 

  52. Pegg DE (2015) Principles of cryopreservation. Methods Mol Biol 1257:3–19

    Article  CAS  PubMed  Google Scholar 

  53. Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47(5):935–945

    Article  CAS  PubMed  Google Scholar 

  54. Davis JM, Rowley SD, Braine HG, Piantadosi S, Santos GW (1990) Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 75(3):781–786

    CAS  PubMed  Google Scholar 

  55. Zenhausern R, Tobler A, Leoncini L, Hess OM, Ferrari P (2000) Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol 79(9):523–526

    Article  CAS  PubMed  Google Scholar 

  56. De Santis L, Coticchio G (2011) Theoretical and experimental basis of slow freezing. Reprod Biomed Online 22(2):125–132

    Article  PubMed  Google Scholar 

  57. Balint B, Ivanovic Z, Petakov M, Taseski J, Jovcic G, Stojanovic N, Milenkovic P (1999) The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplant 23(6):613–619

    Article  CAS  PubMed  Google Scholar 

  58. Mugishima H, Harada K, Chin M, Suzuki T, Takagi K, Hayakawa S, Sato K, Klein JP, Gale RP (1999) Effects of long-term cryopreservation on hematopoietic progenitor cells in umbilical cord blood. Bone Marrow Transplant 23(4):395–396

    Article  CAS  PubMed  Google Scholar 

  59. Aird W, Labopin M, Gorin NC, Antin JH (1992) Long-term cryopreservation of human stem cells. Bone Marrow Transplant 9(6):487–490

    CAS  PubMed  Google Scholar 

  60. Attarian H, Feng Z, Buckner CD, MacLeod B, Rowley SD (1996) Long-term cryopreservation of bone marrow for autologous transplantation. Bone Marrow Transplant 17(3):425–430

    CAS  PubMed  Google Scholar 

  61. Veeraputhiran M, Theus JW, Pesek G, Barlogie B, Cottler-Fox M (2010) Viability and engraftment of hematopoietic progenitor cells after long-term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration. Cytotherapy 12(6):764–766

    Article  CAS  PubMed  Google Scholar 

  62. Correia C, Koshkin A, Carido M, Espinha N, Šarić T, Lima PA, Serra M, Alves PM (2016) Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Transl Med 5:658–669, pii: sctm.2015-0238

    Article  PubMed  Google Scholar 

  63. Seki S, Mazur P (2008) Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 79(4):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tao J, Du J, Kleinhans FW, Critser ES, Mazur P, Critser JK (1995) The effect of collection temperature, cooling rate and warming rate on chilling injury and cryopreservation of mouse spermatozoa. J Reprod Fertil 104(2):231–236

    Article  CAS  PubMed  Google Scholar 

  65. El-Naggar MM, Al-Mashat FM, Elayat AA, Sibiany AR, Ardawi MS, Badawoud MH (2006) Effect of thawing rate and post-thaw culture on the cryopreserved fetal rat islets: functional and morphological correlation. Life Sci 78(17):1925–1932

    Article  CAS  PubMed  Google Scholar 

  66. Hochi S, Semple E, Leibo SP (1996) Effect of cooling and warming rates during cryopreservation on survival of in vitro-produced bovine embryos. Theriogenology 46(5):837–847

    Article  CAS  PubMed  Google Scholar 

  67. Moriguchi H, Madson J (2013) Autologous human cardiac stem cells transplantation for the treatment of ischaemic cardiomyopathy: first study of human-induced pluripotent stem (iPS) cell-derived cardiomyocytes transplantation. BMJ Case Rep. doi:10.1136/bcr-2013-008960

    Google Scholar 

  68. Wong RC, Dottori M, Koh KL, Nguyen LT, Pera MF, Pebay A (2006) Gap junctions modulate apoptosis and colony growth of human embryonic stem cells maintained in a serum-free system. Biochem Biophys Res Commun 344(1):181–188

    Article  CAS  PubMed  Google Scholar 

  69. Wong RC, Pebay A, Nguyen LT, Koh KL, Pera MF (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22(6):883–889

    Article  CAS  PubMed  Google Scholar 

  70. Ichikawa H, Yoshie S, Shirasawa S, Yokoyama T, Yue F, Tomotsune D, Sasaki K (2011) Freeze-thawing single human embryonic stem cells induce e-cadherin and actin filament network disruption via g13 signaling. Cryo Letters 32(6):516–524

    CAS  PubMed  Google Scholar 

  71. Xu X, Cowley S, Flaim CJ, James W, Seymour L, Cui Z (2010) The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol Prog 26(3):827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sugimachi K, Sosef MN, Baust JM, Fowler A, Tompkins RG, Toner M (2004) Long-term function of cryopreserved rat hepatocytes in a coculture system. Cell Transplant 13(2):187–195

    Article  PubMed  Google Scholar 

  73. Sosef MN, Baust JM, Sugimachi K, Fowler A, Tompkins RG, Toner M (2005) Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function. Ann Surg 241(1):125–133

    PubMed  PubMed Central  Google Scholar 

  74. Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285(6):H2355–H2363

    Article  CAS  PubMed  Google Scholar 

  75. Riegler J, Ebert A, Qin X, Shen Q, Wang M, Ameen M, Kodo K, Ong SG, Lee WH, Lee G, Neofytou E, Gold JD, Connolly AJ, Wu JC (2016) Comparison of magnetic resonance imaging and serum biomarkers for detection of human pluripotent stem cell-derived teratomas. Stem Cell Reports 6(2):176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, Hamad OA, Hinsch R, Ignatowicz L, Locke M, Lönnies H, Lambris JD, Teramura Y, Nilsson-Ekdahl K, Nilsson B, Le Blanc K (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mata MM, Mahmood F, Sowell RT, Baum LL (2014) Effects of cryopreservation on effector cells for antibody dependent cell-mediated cytotoxicity (ADCC) and natural killer cell (NK) activity in (51)Cr-release and CD107a assays. J Immunol Methods 406:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dominguez E, Lowdell MW, Perez-Cruz I, Madrigal A, Cohen SBA (1997) Natural killer cell function is altered by freezing in DMSO. Biochem Soc Trans 25(2):175S–S

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants GA-2014-126 from the Center for the Advancement of Science in Space and R21 HL123928 from the NIH. M.K.P. was supported by the Center for Pediatric Nanomedicine at Emory/Georgia Tech. Figures were prepared using Servier Medical Art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Preininger, M.K., Singh, M., Xu, C. (2016). Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_10

Download citation

Publish with us

Policies and ethics