Skip to main content

Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Abstract

Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemic

CD:

Cluster of differentiation

CSCs:

Cancer stem cells

ESCs:

Embryonic stem cells

hESC-IPs:

Human embryonic stem cell derived islet progenitors

HLA-DR:

Human leukocyte antigen – antigen D related

MSCs:

Mesenchymal stem cells

PBSC:

Peripheral blood stem cell

References

  1. Ramalho-Santos M, Willenbring H (2007) On the origin of the term “stem cell”. Cell Stem Cell 1(1):35–38

    Article  CAS  PubMed  Google Scholar 

  2. National Institute of Health. Stem Cell Information. http://stemcells.nih.gov/info/basics/pages/basics4.aspx. Accessed 14 Apr 2016

  3. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  5. Karagiannis P, Eto K (2016) Ten years of induced pluripotency: from basic mechanisms to therapeutic applications. Development 143(12):2039–2043

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  7. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    Article  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(11):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lonardo E, Hermann PC, Heeschen C (2010) Pancreatic cancer stem cells – update and future perspectives. Mol Oncol 4(5):431–442

    Article  PubMed  Google Scholar 

  10. Lang SH, Frame FM, Collins AT (2009) Prostate cancer stem cells. J Pathol 217(2):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milas L, Hittelman WN (2009) Cancer stem cells and tumor response to therapy: current problems and future prospects. Semin Radiat Oncol 19(2):96–105

    Article  PubMed  Google Scholar 

  12. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mimeault M, Batra SK (2010) New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histol Histopathol 25(8):1057–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simeone DM (2008) Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 14(18):5646–5648

    Article  CAS  PubMed  Google Scholar 

  15. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3(8):e3077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien CA, Kreso A, Jamieson CH (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120

    Article  PubMed  Google Scholar 

  18. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  19. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  PubMed  Google Scholar 

  20. McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1):15–26

    Article  CAS  PubMed  Google Scholar 

  21. Gargini R, Cerliani JP, Escoll M, Antón IM, Wandosell F (2015) Cancer stem cell-like phenotype and survival are coordinately regulated by Akt/FoxO/Bim pathway. Stem Cells 33(3):646–660

    Article  CAS  PubMed  Google Scholar 

  22. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093

    Article  CAS  PubMed  Google Scholar 

  23. Karimi-Busheri F, Zadorozhny V, Shawler DL, Fakhrai H (2010) The stability of breast cancer progenitor cells during cryopreservation: maintenance of proliferation, self-renewal, and senescence characteristics. Cryobiology 60(3):308–314

    Article  CAS  PubMed  Google Scholar 

  24. Karimi-Busheri F, Rasouli-Nia A (2015) Integration, networking, and global biobanking in the age of new biology. Adv Exp Med Biol 864:1–9

    Article  PubMed  Google Scholar 

  25. Monteiro J, Fodde R (2010) Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 46(7):1198–1203

    Article  CAS  PubMed  Google Scholar 

  26. Lee JE, Lee DR (2011) Human embryonic stem cells: derivation, maintenance and cryopreservation. Int J Stem Cells 4(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bissoyi A, Nayak B, Pramanik K, Sarangi SK (2014) Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 12(1):23–34

    Article  CAS  PubMed  Google Scholar 

  28. Xue T, Qiao L, Qiu J, Lu L, Zha D, Wei L (2008) Proliferation, multipotency and neuronal differentiation of cryopreserved neural progenitor cells derived from the olfactory neuroepithelium of the adult rat. Cell Biol Int 32(8):950–958

    Article  CAS  PubMed  Google Scholar 

  29. Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, Aoi N, Kato H, Sato K, Murase S, Koshima I, Yoshimura K (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121(2):401–410

    Article  CAS  PubMed  Google Scholar 

  30. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10(3):R52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, Azmi MA, Chua KH, Wan Safwani WK (2015) Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 5:9596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ayuso-Sacido A, Roy NS, Schwartz TH, Greenfield JP, Boockvar JA (2008) Longterm expansion of adult human brain subventricular zone precursors. Neurosurgery 62(1):223–229

    Article  PubMed  Google Scholar 

  33. Norstrom A, Akesson K, Hardarson T, Hamberger L, Bjorquist P, Sartipy P (2006) Molecular and pharmacological properties of human embryonic stem cellderived cardiomyocytes. Exp Biol Med (Maywood) 231(11):1753–1762

    Article  Google Scholar 

  34. Oertel M, Menthena A, Chen YQ, Shafritz DA (2006) Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells 24(10):2244–2251

    Article  PubMed  CAS  Google Scholar 

  35. Baust JG, Gao D, Baust JM (2009) Cryopreservation: an emerging paradigm change. Organogenesis 5(3):90–96

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baust JM, Corwin WL, VanBuskirk R, Baust JG (2015) Biobanking: the future of cell preservation strategies. Adv Exp Med Biol 864:37–53

    Article  PubMed  Google Scholar 

  37. Bischof JC, Wolkers WF, Tsvetkova NM, Oliver AE, Crowe JH (2002) Lipid and protein changes due to freezing in Dunning AT-1 cells. Cryobiology 45(1):22–32

    Article  CAS  PubMed  Google Scholar 

  38. Hosu BG, Mullen SF, Critser JK, Forgacs G (2008) Reversible disassembly of the actin cytoskeleton improves the survival rate and developmental competence of cryopreserved mouse oocytes. PLoS One 3(7):e2787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Honda S, Weigel A, Hjelmeland LM, Handa JT (2001) Induction of telomere shortening and replicative senescence by cryopreservation. Biochem Biophys Res Commun 282(2):493–498

    Article  CAS  PubMed  Google Scholar 

  40. Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG (2010) Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol 26(8):563–567

    Article  PubMed  Google Scholar 

  41. Keane KN, Calton EK, Cruzat VF, Soares MJ, Newsholme P (2015) The impact of cryopreservation on human peripheral blood leucocyte bioenergetics. Clin Sci (Lond) 128(10):723–733

    Article  CAS  Google Scholar 

  42. Bray SE, Paulin FE, Fong SC, Baker L, Carey FA, Levison DA, Steele RJ, Kernohan NM (2010) Gene expression in colorectal neoplasia: modifications induced by tissue ischaemic time and tissue handling protocol. Histopathology 56(2):240–250

    Article  PubMed  Google Scholar 

  43. Del Bo’ C, Fracassetti D, Lanti C, Porrini M, Riso P (2015) Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention. Mutagenesis 30(1):29–35

    Article  PubMed  CAS  Google Scholar 

  44. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ware CB, Nelson AM, Blau CA (2005) Controlled-rate freezing of human ES cells. Biotechniques 38(6):879–883

    Article  CAS  PubMed  Google Scholar 

  46. Thirumala S, Goebel WS, Woods EJ (2009) Clinical grade adult stem cell banking. Organogenesis 5(3):143–154

    Article  PubMed  PubMed Central  Google Scholar 

  47. Seo JM, Sohn MY, Suh JS, Atala A, Yoo JJ, Shon YH (2011) Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology 62(3):167–173

    Article  CAS  PubMed  Google Scholar 

  48. Vasania VS, Prasad P, Gill RK, Mehta A, Viswanathan C, Sarang S, Majumdar AS (2011) Molecular and cellular characterization of expanded and cryopreserved human limbal epithelial stem cells reveal unique immunological properties. Exp Eye Res 92(1):47–56

    Article  CAS  PubMed  Google Scholar 

  49. Chong YK, Toh TB, Zaiden N, Poonepalli A, Leong SH, Ong CE, Yu Y, Tan PB, See SJ, Ng WH, Ng I, Hande MP, Kon OL, Ang BT, Tang C (2009) Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells 27(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karimi-Busheri F, Zadorozhny V, Carrier E, Fakhrai H (2013) Molecular integrity and global gene expression of breast and lung cancer stem cells under long-term storage and recovery. Cell Tissue Bank 14(2):175–186

    Article  CAS  PubMed  Google Scholar 

  51. Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1(2):243–255

    CAS  PubMed  Google Scholar 

  52. Walters EM, Benson JD, Woods EJ, Critser JK (2009) The history of sperm cryopreservation. In: Pacey AA, Tomlinson MJ (eds) Sperm banking: theory and practice. Cambridge University Press, Cambridge, pp 1–10

    Chapter  Google Scholar 

  53. Asghar W, El Assal R, Shafiee H, Anchan RM, Demirci U (2014) Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol J 9(7):895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pegg DE (2002) The history and principles of cryopreservation. Semin Reprod Med 20(1):5–13

    Article  CAS  PubMed  Google Scholar 

  55. Manipalviratn S, Huang A, Decherney AH (2006) Future of infertility treatment. Int Surg 91(5 Suppl):S3–S14

    PubMed  Google Scholar 

  56. Woods EJ, Benson JD, Agca Y, Critser JK (2004) Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48(2):146–156

    Article  CAS  PubMed  Google Scholar 

  57. Huang H, Choi JK, Rao W, Zhao S, Agarwal P, Zhao G, He X (2015) Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume Low-CPA cell vitrification. Adv Funct Mater 25(44):6939–6850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71(2):181–197

    Article  CAS  PubMed  Google Scholar 

  59. Tavukcuoglu S, Al-Azawi T, Afshin Khaki A, Al-Hasani S (2012) Is vitrification standard method of cryopreservation. Middle East Fertil Soc J 17(3):152–156

    Article  Google Scholar 

  60. Moon JH, Lee JR, Jee BC, Suh CS, Kim SH, Lim HJ, Kim HK (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23(8):1760–1770

    Article  PubMed  Google Scholar 

  61. Lahmy R, Bolyukh VF, Castilla SM, Laurent LC, Katkov II, Itkin-Ansari P (2015) Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions. Cryobiology 70(3):283–286

    Article  CAS  PubMed  Google Scholar 

  62. Coopman K (2011) Large-scale compatible methods for the preservation of human embryonic stem cells: current perspectives. Biotechnol Prog 27(6):1511–1521

    Article  CAS  PubMed  Google Scholar 

  63. Veneziani BM, De Placido S (2013) Issues of banking breast cancer cells to generate mammospheres. Cell Tissue Bank 14(2):153–8

    Article  PubMed  Google Scholar 

  64. Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto J (2001) CD24 induces poptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling ystem. J Immunol 166(9):5567–5577

    Article  CAS  PubMed  Google Scholar 

  65. Horton SJ, Huntly BJ (2012) Recent advances in acute myeloid leukemia stem cell biology. Haematologica 97(7):966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG (2010) EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31(11):1913–1921

    Article  PubMed  CAS  Google Scholar 

  67. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  CAS  PubMed  Google Scholar 

  68. Bi Y, Meng Y, Wu H, Cui Q, Luo Y, Xue X (2016) Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: a ten-year follow-up and prognostic analysis. J of Surg Oncol 113(2):144–151

    Article  CAS  Google Scholar 

  69. Cherciu I, Bărbălan A, Pirici D, Mărgăritescu C, Săftoiu A (2014) Stem cells, colorectal cancer and cancer stem cell markers correlations. Curr Health Sci J 40(3):153–161

    PubMed  PubMed Central  Google Scholar 

  70. Lan J, Huang B, Liu R, Ju X, Zhou Y, Jiang J, Liang W, Shen Y, Li F, Pang L (2015) Expression of cancer stem cell markers and their correlation with pathogenesis in vascular tumors. Int J Clin Exp Pathol 8(10):12621–12633

    PubMed  PubMed Central  Google Scholar 

  71. Honing J, Pavlov KV, Mul VE, Karrenbeld A, Meijer C, Faiz Z, Smit JK, Hospers GA, Burgerhof JG, Kruyt FA, Kleibeuker JH, Plukker JT (2015) CD44, SHH and SOX2 as novel biomarkers in esophageal cancer patients treated with neoadjuvant chemoradiotherapy. Radiother Oncol 117(1):152–158

    Article  CAS  PubMed  Google Scholar 

  72. Chitteti BR, Bethel M, Kacena MA, Srour EF (2013) CD166 and regulation of hematopoiesis. Curr Opin Hematol 20(4):273–280

    Article  CAS  PubMed  Google Scholar 

  73. Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, Espedal H, Vittori M, Herold-Mende C, Miletic H, Bjerkvig R, Turnšek TL (2016) Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 7(1):593–609

    PubMed  Google Scholar 

  74. Nishida H, Yamazaki H, Yamada T, Iwata S, Dang NH, Inukai T, Sugita K, Ikeda Y, Morimoto C (2009) CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells. Biochem Biophys Res Commun 382(1):57–62

    Article  CAS  PubMed  Google Scholar 

  75. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    Article  CAS  PubMed  Google Scholar 

  76. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120(9):3326–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gemei M, Mirabelli P, Di Noto R, Corbo C, Iaccarino A, Zamboli A, Troncone G, Galizia G, Lieto E, Del Vecchio L, Salvatore F (2013) CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer 119(4):729–738

    Article  CAS  PubMed  Google Scholar 

  78. Zhang R, Zhang P, Wang H, Hou D, Li W, Xiao G, Li C (2015) Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res Ther 6:262

    Article  PubMed  PubMed Central  Google Scholar 

  79. Walter RB, Appelbaum FR, Estey EH, Bernstein ID (2014) The role of CD33 as therapeutic target in acute myeloid leukemia. Expert Opin Ther Targets 18(7):715–718

    Article  CAS  PubMed  Google Scholar 

  80. Mardiros A, Forman SJ, Budde LE (2015) T cells expressing CD123 chimeric antigen receptors for treatment of acute myeloid leukemia. Curr Opin Hematol 22(6):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, Luongo JL, Danet-Desnoyers GA, Bonnet D (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106(13):4086–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yin C, Xie WF (2014) Hepatocellular carcinoma: basic and transitional research. Gastrointest Tumors 1(2):76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104(26):11008–11013

    Google Scholar 

  84. Du W, Hu Y, Lu C, Li J, Liu W, He Y, Wang P, Cheng C, Hu YU, Huang S, Yao J, Zheng J (2015) Cluster of differentiation 96 as a leukemia stem cell-specific marker and a factor for prognosis evaluation in leukemia. Mol Clin Oncol 3(4):833–838

    Google Scholar 

  85. Weissman IL (2007) CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 104(26):11008–11013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172(7):3994–3998

    Article  CAS  PubMed  Google Scholar 

  87. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hart SP, Alexander KM, Dransfield I (2004) Immune complexes bind preferentially to Fc gamma RIIA (CD32) on apoptotic neutrophils, leading to augmented phagocytosis by macrophages and release of proinflammatory cytokines. J Immunol 172(3):1882–1887

    Article  CAS  PubMed  Google Scholar 

  89. Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, Uchida N, Suzuki N, Sone A, Najima Y, Ozawa H, Wake A, Taniguchi S, Shultz LD, Ohara O, Ishikawa F (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2(17):17ra9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Amu S, Brisslert M (2011) Phenotype and function of CD25-expressing B lymphocytes isolated from human umbilical cord blood. Clin Dev Immunol 2011:481948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–166

    Article  CAS  PubMed  Google Scholar 

  92. Valent P, Sadovnik I, Ráčil Z, Herrmann H, Blatt K, Cerny-Reiterer S, Eisenwort G, Lion T, Holyoake T, Mayer J (2014) DPPIV (CD26) as a novel stem cell marker in Ph+chronic myeloid leukaemia. Eur J Clin Invest 44(12):1239–1245

    Article  CAS  PubMed  Google Scholar 

  93. Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O (2009) CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 27(12):2928–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zola H, Swart B, Nicholson I, Aasted B et al (2005) CD molecules 2005: human cell differentiation molecules. Blood 106(9):3123–3126

    Article  CAS  PubMed  Google Scholar 

  95. Uniport website: http://www.uniprot.org/docs/cdlist. Accessed 13 Dec 2016

  96. Ahn SM, Goode RJ, Simpson RJ (2008) Stem cell markers: insights from membrane proteomics? Proteomics 8(23–24):4946–4957

    Article  CAS  PubMed  Google Scholar 

  97. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  98. Kim YY, Ku SY, Liu HC, Cho HJ, Oh SK, Moon SY, Choi YM (2011) Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod Sci 18(3):252–260

    Article  CAS  PubMed  Google Scholar 

  99. Gordiyenko OI, Anikieieva MO, Rozanova SL, Kovalenko SY, Kovalenkol IF, Gordiyenko EO (2015) Development of a model to investigate red blood cell surface characteristics after cryopreservation. Cryo Lett 36(3):221–226

    CAS  Google Scholar 

  100. Munévar JC, Gutiérrez N, Jiménez NT, Lafaurie GI (2015) Evaluation of two human dental pulp stem cell cryopreservation methods. Acta Odontol Latinoam 28(2):114–121

    PubMed  Google Scholar 

  101. Paynter SJ (2008) Principles and practical issues for cryopreservation of nerve cells. Brain Res Bull 75(1):1–14

    Article  CAS  PubMed  Google Scholar 

  102. Shima T, Iwasaki H, Yamauchi T, Kadowaki M, Kiyosuke M, Mochimaru T, Takenaka K, Miyamoto T, Akashi K, Teshima T (2015) Preserved in vivo reconstitution ability of PBSCs cryopreserved for a decade at −80°C. Bone Marrow Transplant 50(9):1195–1200

    Article  CAS  PubMed  Google Scholar 

  103. Mirzayans R, Andrais B, Scott A, Murray D (2012) New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012:170325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  105. Pérez-Mancera PA, Young AR, Narita M (2014) Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14(8):547–558

    Article  PubMed  CAS  Google Scholar 

  106. Pollock K, Sumstad D, Kadidlo D, McKenna DH, Hubel A (2015) Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy 17(1):38–45

    Article  PubMed  Google Scholar 

  107. Choudhery MS, Harris DT (2014) Cryopreservation can be used as an anti-aging strategy. Cytotherapy 16(12):1771–1773

    Article  PubMed  Google Scholar 

  108. Karimi-Busheri F, Rasouli-Nia A, Mackey JR, Weinfeld M (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12(3):R31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feridoun Karimi-Busheri or Michael Weinfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karimi-Busheri, F., Rasouli-Nia, A., Weinfeld, M. (2016). Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_1

Download citation

Publish with us

Policies and ethics