Skip to main content

Modulation of Innate Immune Cells to Create Transplant Tolerance

  • Chapter
  • First Online:
  • 1949 Accesses

Abstract

Graft loss to rejection remains a key impediment to transplant success, which limits the therapeutic potential of this procedure. Though adaptive immune cells are critical in rejection, recent studies have demonstrated the importance of innate immune cells in dictating transplant outcomes (rejection or survival), highlighting the necessity in therapeutically targeting innate immune cells in the induction of tolerance to organ transplants. However, there are many challenges facing the field, as innate immune system consists of diverse cell types, molecular sensors, and soluble mediators that are different from those in the adaptive system. Also, some innate immune cells mediate graft injury, while others promote transplant survival, making therapeutic targeting of innate immune cells a challenging task. In this chapter, key elements in the innate immune system, their responses to organ transplants, as well as the challenges and opportunities in targeting those elements in favor of transplant survival are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Murphy SP, Porrett PM, Turka LA (2011) Innate immunity in transplant tolerance and rejection. Immunol Rev 241(1):39–48

    Article  Google Scholar 

  2. Liu W, Li XC (2010) An overview on non-T cell pathways in transplant rejection and tolerance. Curr Opin Organ Transplant 15(4):422–426

    Article  Google Scholar 

  3. LaRosa DF, Rahman AH, Turka LA (2007) The innate immune system in allograft rejection and tolerance. J Immunol 178(12):7503–7509

    Article  Google Scholar 

  4. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384

    Article  Google Scholar 

  5. Elinav E, Strowig T, Henao-Mejia J et al (2011) Regulation of the antimicrobial response by NLR proteins. Immunity 34(5):665–679

    Article  Google Scholar 

  6. Kato H, Takahasi K, Fujita T (2011) RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 243(1):91–98

    Article  Google Scholar 

  7. O'Neill LAJ, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364

    Article  Google Scholar 

  8. Cao X (2015) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50

    Article  Google Scholar 

  9. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740

    Google Scholar 

  10. Cravedi P, Heeger PS (2014) Complement as a multifaceted modulator of kidney transplant injury. J Clin Invest 124(6):2348–2354

    Article  Google Scholar 

  11. Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160(5):1558–1578

    Article  Google Scholar 

  12. Chen Song S, Zhong S, Xiang Y et al (2011) Complement inhibition enables renal allograft accommodation and long-term engraftment in presensitized nonhuman primates. Am J Transplant 11(10):2057–2066

    Article  Google Scholar 

  13. Blom AM, Villoutreix BO, Dahlback B (2004) Complement inhibitor C4b-binding protein-friend or foe in the innate immune system? Mol Immunol 40(18):1333–1346

    Article  Google Scholar 

  14. Collard CD, Bukusoglu C, Agah A et al (1999) Hypoxia-induced expression of complement receptor type 1 (CR1, CD35) in human vascular endothelial cells. Am J Physiol 276(2 Pt 1):C450–C458

    Google Scholar 

  15. Ollert MW, David K, Bredehorst R et al (1995) Classical complement pathway activation on nucleated cells. Role of factor H in the control of deposited C3b. J Immunol 155(10):4955–4962

    Google Scholar 

  16. Heeger PS, Lalli PN, Lin F et al (2005) Decay-accelerating factor modulates induction of T cell immunity. J Exp Med 201(10):1523–1530

    Article  Google Scholar 

  17. Lalli PN, Strainic MG, Yang M et al (2008) Locally produced C5a binds to T cell expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 112(5):1759–1766

    Article  Google Scholar 

  18. Cravedi P, van der Touw W, Heeger PS (2013) Complement regulation of T-cell alloimmunity. Semin Nephrol 33(6):565–574

    Article  Google Scholar 

  19. Castellano G, Woltman AM, Nauta AJ et al (2004) Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood 103(10):3813–3820

    Article  Google Scholar 

  20. Strainic MG, Liu J, Huang D et al (2008) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28(3):425–435

    Article  Google Scholar 

  21. Pratt JR, Basheer SA, Sacks SH (2002) Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 8(6):582–587

    Article  Google Scholar 

  22. Shi FD, Ljunggren HG, La Cava A et al (2011) Organ-specific features of natural killer cells. Nat Rev Immunol 11(10):658–671

    Article  Google Scholar 

  23. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  Google Scholar 

  24. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502

    Article  Google Scholar 

  25. Elliott JM, Yokoyama WM (2011) Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 32(8):364–372

    Article  Google Scholar 

  26. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  Google Scholar 

  27. Yu G, Xu X, Vu MD et al (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203(8):1851–1858

    Article  Google Scholar 

  28. Kroemer A, Edtinger K, Li XC (2008) The innate NK cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 13:339–343

    Article  Google Scholar 

  29. Sun JC (2010) Re-educating natural killer cells. J Exp Med 207(10):2049–2052

    Article  Google Scholar 

  30. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  Google Scholar 

  31. Auffray C, Fogg D, Garfa M et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670

    Article  Google Scholar 

  32. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  Google Scholar 

  33. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  Google Scholar 

  34. Denning TL, Wang YC, Patel SR et al (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8(10):1086–1094

    Article  Google Scholar 

  35. Brem-Exner BG, Sattler C, Hutchinson JA et al (2008) Macrophages driven to a novel state of activation have anti-inflammatory properties in mice. J Immunol 180(1):335–349

    Article  Google Scholar 

  36. Allavena P, Sica A, Garlanda C et al (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222(1):155–161

    Article  Google Scholar 

  37. Liu W, Xiao X, Demirci G et al (2012) Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol 188(6):2703–2711

    Article  Google Scholar 

  38. Fox A, Mountford J, Braakhuis A et al (2001) Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol 166(3):2133–2140

    Article  Google Scholar 

  39. Coquerelle C, Moser M (2010) DC subsets in positive and negative regulation of immunity. Immunol Rev 234(1):317–334

    Article  Google Scholar 

  40. Ueno H, Schmitt N, Klechevsky E et al (2010) Harnessing human dendritic cell subsets for medicine. Immunol Rev 234(1):199–212

    Article  Google Scholar 

  41. Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7:610–621

    Article  Google Scholar 

  42. Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241(1):206–227

    Article  Google Scholar 

  43. Ohnmacht C, Pullner A, King SBS et al (2009) Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206(3):549–559

    Article  Google Scholar 

  44. Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17(3–4):293–307

    Google Scholar 

  45. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42(2):153–164

    Article  Google Scholar 

  46. El-Sawy T, Belperio JA, Strieter RM et al (2005) Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 112(3):320–331

    Article  Google Scholar 

  47. Suurmond J, van Heemst J, van Heiningen J et al (2013) Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. Eur J Immunol 43(7):1758–1768

    Article  Google Scholar 

  48. de Vries VC, Wasiuk A, Bennett KA et al (2009) Mast cell degranulation breaks peripheral tolerance. Am J Transplant 9(10):2270–2280

    Article  Google Scholar 

  49. Lu LF, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002

    Article  Google Scholar 

  50. Talayero P, Mancebo E, Calvo-Pulido J et al (2016) Innate lymphoid cells groups 1 and 3 in the epithelial compartment of functional human intestinal allografts. Am J Transplant 16(1):72–82

    Article  Google Scholar 

  51. Konya V, Mjosberg J (2015) Innate lymphoid cells in graft-versus-host disease. Am J Transplant 15(11):2795–2801

    Article  Google Scholar 

  52. Taniguchi M, Harada M, Kojo S et al (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    Article  Google Scholar 

  53. Ikehara Y, Yasunami Y, Kodama S et al (2000) CD4(+) Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest 105(12):1761–1767

    Article  Google Scholar 

  54. Seino KI, Fukao K, Muramoto K et al (2001) Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci U S A 98(5):2577–2581

    Article  Google Scholar 

  55. Shigeoka AA, Holscher TD, King AJ et al (2007) TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both myD88-dependent and -independent pathways. J Immunol 178(10):6252–6258

    Article  Google Scholar 

  56. Zhai Y, Shen XD, O'Connell R et al (2004) Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 173(12):7115–7119

    Article  Google Scholar 

  57. Chong AJ, Shimamoto A, Hampton CR et al (2004) Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 128(2):170–179

    Article  Google Scholar 

  58. Li L, Okusa MD (2010) Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol 30(3):268–277

    Article  Google Scholar 

  59. Zhang ZX, Wang S, Huang X et al (2008) NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J Immunol 181(11):7489–7498

    Article  Google Scholar 

  60. Ysebaert DK, De Greef KE, Vercauteren SR et al (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15(10):1562–1574

    Article  Google Scholar 

  61. Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30(2):199–209

    Article  Google Scholar 

  62. Maroko PR, Carpenter CB, Chiariello M et al (1978) Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest 61(3):661–670

    Article  Google Scholar 

  63. Diepenhorst GMP, Van Gulik TM, Hack CE (2009) Complement-mediated ischemia-reperfusion injury: Lessons learned from animal and clinical studies. Ann Surg 249(6):889–899

    Article  Google Scholar 

  64. Brown KM, Kondeatis E, Vaughan RW et al (2006) Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J Med 354(19):2014–2023

    Article  Google Scholar 

  65. Zhou W, Farrar CA, Abe K et al (2000) Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105(10):1363–1371

    Article  Google Scholar 

  66. Yamada K, Miwa T, Liu J et al (2004) Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol 172(6):3869–3875

    Article  Google Scholar 

  67. Lu X, Li Y, Simovic MO et al (2011) Decay-accelerating factor attenuates c-reactive protein-potentiated tissue injury after mesenteric ischemia/reperfusion. J Surg Res 167(2):e103–e115

    Article  Google Scholar 

  68. Zhou W, Medof ME, Heeger PS et al (2007) Graft-derived complement as a mediator of transplant injury. Curr Opin Immunol 19(5):569–576

    Article  Google Scholar 

  69. Farrar CA, Zhou W, Lin T et al (2006) Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J 20(2):217–226

    Article  Google Scholar 

  70. Pratt JR, Jones ME, Dong J et al (2003) Nontransgenic hyperexpression of a complement regulator in donor kidney modulates transplant ischemia/reperfusion damage, acute rejection, and chronic nephropathy. Am J Pathol 163(4):1457–1465

    Article  Google Scholar 

  71. Oberbarnscheidt MH, Zeng Q, Li Q et al (2014) Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 124(8):3579–3589

    Article  Google Scholar 

  72. Li XC, Rothstein DM, Sayegh MH (2009) Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 229:271–293

    Article  Google Scholar 

  73. Goldstein DR, Tesar BM, Akira S et al (2003) Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest 111(10):1571–1578

    Article  Google Scholar 

  74. McKay D, Shigeoka A, Rubinstein M et al (2006) Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol 36(8):1994–2002

    Article  Google Scholar 

  75. Hancock WW, Thomson NM, Atkins RC (1983) Composition of interstitial cellular infiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts. Transplantation 35:458–463

    Article  Google Scholar 

  76. Matheson PJ, Dittmer ID, Beaumont BW et al (2005) The macrophage is the predominant inflammatory cell in renal allograft intimal arteritis. Transplantation 79(12):1658–1662

    Article  Google Scholar 

  77. Gao W, Topham PS, King JA et al (2000) Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J Clin Invest 105(1):35–44

    Article  Google Scholar 

  78. Jose MD, Ikezumi Y, Van Rooijen N et al (2003) Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation 76(7):1015–1022

    Article  Google Scholar 

  79. Qi F, Adair A, Ferenbach D et al (2008) Depletion of cells of monocyte lineage prevents loss of renal microvasculature in murine kidney transplantation. Transplantation 86(9):1267–1274

    Article  Google Scholar 

  80. Kirk AD, Hale DA, Mannon RB et al (2003) Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (Campath-1H). Transplantation 76(1):120–129

    Article  Google Scholar 

  81. Kaul AM, Goparaju S, Dvorina N et al (2015) Acute and chronic rejection: compartmentalization and kinetics of counterbalancing signals in cardiac transplants. Am J Transplant 15(2):333–345

    Article  Google Scholar 

  82. Wu T, Bond G, Martin D et al (2006) Histopathologic characteristics of human intestine allograft acute rejection in patients pretreated with thymoglobulin or alemtuzumab. Am J Gastroenterol 101(7):1617–1624

    Article  Google Scholar 

  83. Kim J, Chang CK, Hayden T et al (2007) The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immunol 179(10):6416–6420

    Article  Google Scholar 

  84. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    Article  Google Scholar 

  85. Kroemer A, Xiao X, Degauque N et al (2008) The innate NK cells, allograft rejection, and a key role for IL-15. J Immunol 180(12):7818–7826

    Article  Google Scholar 

  86. Martin-Fontecha A, Thomsen LL, Brett S et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5(12):1260–1265

    Article  Google Scholar 

  87. Colvin RB (2007) Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. J Am Soc Nephrol 18(4):1046–1056

    Article  Google Scholar 

  88. Fuquay R, Renner B, Kulik L et al (2013) Renal ischemia-reperfusion injury amplifies the humoral immune response. J Am Soc Nephrol 24(7):1063–1072

    Article  Google Scholar 

  89. Raedler H, Heeger PS (2011) Complement regulation of T-cell alloimmunity. Curr Opin Organ Transplant 16(1):54–60

    Article  Google Scholar 

  90. Pavlov V, Raedler H, Yuan S et al (2008) Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection. J Immunol 181(7):4580–4589

    Article  Google Scholar 

  91. Solez K, Colvin RB, Racusen LC et al (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 8(4):753–760

    Article  Google Scholar 

  92. Racusen LC, Regele H (2010) The pathology of chronic allograft dysfunction. Kidney Int 78(suppl 119):S27–S32

    Google Scholar 

  93. Michelsen KS, Doherty TM, Shah PK et al (2004) TLR signaling: an emerging bridge from innate immunity to atherogenesis. J Immunol 173(10):5901–5907

    Article  Google Scholar 

  94. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145

    Article  Google Scholar 

  95. Wang S, Schmaderer C, Kiss E et al (2010) Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis Model Mech 3(1–2):92–103

    Article  Google Scholar 

  96. Methe H, Zimmer E, Grimm C et al (2004) Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation. Transplantation 78(9):1324–1331

    Article  Google Scholar 

  97. Kitchens WH, Chase CM, Uehara S et al (2007) Macrophage depletion suppresses cardiac allograft vasculopathy in mice. Am J Transplant 7:2675–2682

    Article  Google Scholar 

  98. Yang J, Reutzel-Selke A, Steier C et al (2003) Targeting of macrophage activity by adenovirus-mediated intragraft overexpression of TNFRp55-Ig, IL-12p40, and vIL-10 ameliorates adenovirus-mediated chronic graft injury, whereas stimulation of macrophages by overexpression of IFN-(gamma) accelerates chronic graft injury in a rat renal allograft model. J Am Soc Nephrol 14(1):214–225

    Article  Google Scholar 

  99. Ricardo SD, Van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118(11):3522–3530

    Article  Google Scholar 

  100. Niedermeier M, Reich B, Gomez MR et al (2009) CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A 106(42):17892–17897

    Article  Google Scholar 

  101. Pilmore HL, Painter DM, Bishop GA et al (2000) Early up-regulation of macrophages and myofibroblasts: a new marker for development of chronic renal allograft rejection. Transplantation 69(12):2658–2662

    Article  Google Scholar 

  102. Jevnikar AM, Mannon RB (2008) Late kidney allograft loss: what we know about it, and what we can do about it. Clin J Am Soc Nephrol 3(Suppl 2):S56–S67

    Article  Google Scholar 

  103. Toki D, Zhang W, Hor KL et al (2014) The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation. Am J Transplant 14(9):2126–2136

    Article  Google Scholar 

  104. Ikezumi Y, Suzuki T, Yamada T et al (2015) Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol 30(6):1007–1017

    Article  Google Scholar 

  105. Einecke G, Sis B, Reeve J et al (2009) Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant 9(11):2520–2531

    Article  Google Scholar 

  106. Gaston RS, Cecka JM, Kasiske BL et al (2010) Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure. Transplantation 90(1):68–74

    Article  Google Scholar 

  107. Qian Z, Hu W, Liu J et al (2001) Accelerated graft arteriosclerosis in cardiac transplants. Transplantation 72(5):900–906

    Article  Google Scholar 

  108. Sheerin NS, Risley P, Abe K et al (2008) Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB J 22(4):1065–1072

    Article  Google Scholar 

  109. Hirohashi T, Chase CM, Della Pelle P et al (2012) A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody. Am J Transplant 12(2):313–321

    Article  Google Scholar 

  110. Sis B, Campbell PM, Mueller T et al (2007) Transplant glomerulopathy, late antibody-mediated rejection and the ABCD tetrad in kidney allograft biopsies for cause. Am J Transplant 7(7):1743–1752

    Article  Google Scholar 

  111. Van Bergen J, Thompson A, Haasnoot GW et al (2011) KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am J Transplant 11(9):1959–1964

    Article  Google Scholar 

  112. Uehara S, Chase CM, Kitchens WH et al (2005) NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J Immunol 175(5):3424–3430

    Article  Google Scholar 

  113. Li XC, Strom TB, Turka LA et al (2001) T cell death and transplantation tolerance. Immunity 14:407–416

    Article  Google Scholar 

  114. Schulz O, Reis E, Sousa C (2002) Cross-presentation of cell-associated antigens by CD8(alpha)+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107(2):183–189

    Article  Google Scholar 

  115. Iyoda T, Shimoyama S, Liu K et al (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195(10):1289–1302

    Article  Google Scholar 

  116. Schnorrer P, Behrens GMN, Wilson NS et al (2006) The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci U S A 103(28):10729–10734

    Article  Google Scholar 

  117. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788

    Article  Google Scholar 

  118. Morelli AE, Larregina AT (2010) Apoptotic cell-based therapies against transplant rejection: role of recipient's dendritic cells. Apoptosis 15(9):1083–1097

    Article  Google Scholar 

  119. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    Article  Google Scholar 

  120. Hill M, Thebault P, Segovia M et al (2011) Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and Epstein-Barr virus-induced gene 3. Am J Transplant 11(10):2036–2045

    Article  Google Scholar 

  121. Hutchinson JA, Riquelme P, Sawitzki B et al (2011) Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 187(5):2072–2078

    Article  Google Scholar 

  122. Bezie S, Picarda E, Ossart J et al (2015) IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest 125(10):3952–3964

    Article  Google Scholar 

  123. Conde P, Rodriguez M, van der Touw W et al (2015) DC-SIGN(+) macrophages control the induction of transplantation tolerance. Immunity 42(6):1143–1158

    Article  Google Scholar 

  124. Deniz G, Erten G, Kucuksezer UC et al (2008) Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 180(2):850–857

    Article  Google Scholar 

  125. van der Touw W, Burrell B, Lal G et al (2012) NK cells are required for costimulatory blockade induced tolerance to vascularized allografts. Transplantation 94(6):575–584

    Article  Google Scholar 

  126. Adams AB, Williams MA, Jones TR et al (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111(12):1887–1895

    Article  Google Scholar 

  127. Porrett PM, Yuan X, LaRosa DF et al (2008) Mechanisms underlying blockade of allograft acceptance by TLR ligands. J Immunol 181(3):1692–1699

    Article  Google Scholar 

  128. Walker WE, Nasr IW, Camirand G et al (2006) Absence of innate MyD88 signaling promotes inducible allograft acceptance. J Immunol 177(8):5307–5316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian C. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Lan, P., Li, X.C. (2017). Modulation of Innate Immune Cells to Create Transplant Tolerance. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_7

Download citation

Publish with us

Policies and ethics