Skip to main content

T-Cell Mediated Immunomodulation and Transplant Optimization

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

T-cell mediated immune responses are decisive for the success or failure of transplantation. As a consequence, T-cell mediated events have been the first and oldest major target for therapeutic efforts to optimize transplant survival. With cells, tissues, scaffolds, and devices more and more often merged to become medicinal products, i.e., tissue-engineered products or combination of advanced therapy medicinal product (ATMPs), understanding the T-cell response may be valuable for the purpose of this book to pave the way for novel, smart strategies to therapeutically modulate infiltrating immune cells, reducing side effects and improving the therapeutic outcome, i.e., healing, tissue restoration, and transplant survival. In this chapter, current and novel concepts of T-cell immunomodulation and their clinical translation will be presented and discussed to allow the transfer of the knowledge gained to implanted materials and devices as well as to combination ATMPs. Starting from a hypothesis as to the similarities and differences between classical T-cell immune responses and those directed against scaffolds and devices, the mechanisms behind T-cell responses in tolerance and rejection are unraveled and therapeutic strategies to modulate and control T-cells in front of implanted materials and devices are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett AJ, Rezvani K, Solomon S et al (2003) New developments in allotransplant immunology. Hematology Am Soc Hematol Educ Program:350–371

    Google Scholar 

  2. Rana A, Gruessner A, Agopian VG et al (2015) Survival benefit of solid-organ transplant in the United States. JAMA Surg 150(3):252–259

    Article  Google Scholar 

  3. Blaise D, Castagna L (2012) Do different conditioning regimens really make a difference? Hematology Am Soc Hematol Educ Program 2012:237–245

    Google Scholar 

  4. Dilek N, Poirier N, Hulin P et al (2013) Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells. PLoS One 8(12), e83139

    Article  Google Scholar 

  5. Ray WZ, Kasukurthi R, Papp EM et al (2010) The role of T helper cell differentiation in promoting nerve allograft survival with costimulation blockade. J Neurosurg 112(2):386–393

    Article  Google Scholar 

  6. Alegre ML, Frauwirth KA, Thompson CB (2001) T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1(3):220–228

    Article  Google Scholar 

  7. Dong C, Juedes AE, Temann UA et al (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101

    Article  Google Scholar 

  8. Klemann C, Wagner L, Stephan M et al (2016) Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol 185(1):1–21

    Article  Google Scholar 

  9. Miller SD, Vanderlugt CL, Lenschow DJ et al (1995) Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3(6):739–745

    Article  Google Scholar 

  10. Lin H, Rathmell JC, Gray GS et al (1998) Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J Exp Med 188(1):199–204

    Article  Google Scholar 

  11. Mandelbrot DA, Oosterwegel MA, Shimizu K et al (2001) B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J Clin Invest 107(7):881–887

    Article  Google Scholar 

  12. Yamada A, Kishimoto K, Dong VM et al (2001) CD28-independent costimulation of T cells in alloimmune responses. J Immunol 167(1):140–146

    Article  Google Scholar 

  13. Hutloff A, Dittrich AM, Beier KC et al (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266

    Article  Google Scholar 

  14. McAdam AJ, Chang TT, Lumelsky AE et al (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040

    Article  Google Scholar 

  15. Ozkaynak E, Gao W, Shemmeri N et al (2001) Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2(7):591–596

    Article  Google Scholar 

  16. Tai CY, Weber RV, Mackinnon SE et al (2010) Multiple costimulatory blockade in the peripheral nerve allograft. Neurol Res 32(3):332–336

    Article  Google Scholar 

  17. Hildebrandt M, Reutter W, Arck P et al (2000) A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clin Sci (Lond) 99(2):93–104

    Article  Google Scholar 

  18. Gardner D, Jeffery LE, Sansom DM (2014) Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 14(9):1985–1991

    Article  Google Scholar 

  19. Graca L, Honey K, Adams E et al (2000) Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. J Immunol 165(9):4783–4786

    Article  Google Scholar 

  20. Li Y, Li XC, Zheng XX et al (1999) Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med 5(11):1298–1302

    Article  Google Scholar 

  21. Kirk AD, Burkly LC, Batty DS et al (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 5(6):686–693

    Article  Google Scholar 

  22. van Maurik A, Herber M, Wood KJ et al (2002) Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol 169(10):5401–5404

    Article  Google Scholar 

  23. Zhai Y, Meng L, Gao F et al (2006) CD4+ T regulatory cell induction and function in transplant recipients after CD154 blockade is TLR4 independent. J Immunol 176(10):5988–5994

    Article  Google Scholar 

  24. Ensminger SM, Witzke O, Spriewald BM et al (2000) CD8+ T cells contribute to the development of transplant arteriosclerosis despite CD154 blockade. Transplantation 69(12):2609–2612

    Article  Google Scholar 

  25. Guillot C, Guillonneau C, Mathieu P et al (2002) Prolonged blockade of CD40-CD40 ligand interactions by gene transfer of CD40Ig results in long-term heart allograft survival and donor-specific hyporesponsiveness, but does not prevent chronic rejection. J Immunol 168(4):1600–1609

    Article  Google Scholar 

  26. Law CL, Grewal IS (2009) Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol 647:8–36

    Article  Google Scholar 

  27. Pinelli DF, Ford ML (2015) Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance. Immunotherapy 7(4):399–410

    Article  Google Scholar 

  28. Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7(5):379–390

    Article  Google Scholar 

  29. Casey A, Dirks F, Liang OD et al (2014) Bone marrow-derived multipotent stromal cells attenuate inflammation in obliterative airway disease in mouse tracheal allografts. Stem Cells Int 2014:468927

    Article  Google Scholar 

  30. Prescott SL, Macaubas C, Holt BJ et al (1998) Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 160(10):4730–4737

    Google Scholar 

  31. Prescott SL, Macaubas C, Smallacombe T et al (1999) Development of allergen-specific T-cell memory in atopic and normal children. Lancet 353(9148):196–200

    Article  Google Scholar 

  32. Wiles K, Fishman JM, De Coppi P et al (2016) The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev 22(3):208–219

    Article  Google Scholar 

  33. Mold JE, Venkatasubrahmanyam S, Burt TD et al (2010) Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330(6011):1695–1699

    Article  Google Scholar 

  34. Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282(1821):20143085

    Article  Google Scholar 

  35. Mackroth MS, Malhotra I, Mungai P et al (2011) Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. J Immunol 186(5):2780–2791

    Article  Google Scholar 

  36. Takahata Y, Nomura A, Takada H et al (2004) CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 32(7):622–629

    Article  Google Scholar 

  37. Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22(11):1041–1050

    Article  Google Scholar 

  38. Sheu TT, Chiang BL, Yen JH et al (2014) Premature CD4+ T cell aging and its contribution to lymphopenia-induced proliferation of memory cells in autoimmune-prone non-obese diabetic mice. PLoS One 9(2), e89379

    Article  Google Scholar 

  39. Goronzy JJ, Weyand CM (2003) Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5(5):225–234

    Article  Google Scholar 

  40. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  Google Scholar 

  41. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  Google Scholar 

  42. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  Google Scholar 

  43. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  Google Scholar 

  44. Penack O, Holler E, van den Brink MR (2010) Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 115(10):1865–1872

    Article  Google Scholar 

  45. Flowers ME, Martin PJ (2015) How we treat chronic graft-versus-host disease. Blood 125(4):606–615

    Article  Google Scholar 

  46. Shimabukuro-Vornhagen A, Hallek MJ, Storb RF et al (2009) The role of B cells in the pathogenesis of graft-versus-host disease. Blood 114(24):4919–4927

    Article  Google Scholar 

  47. Mellman I, Hubbard-Lucey VM, Tontonoz MJ et al (2016) De-risking immunotherapy: report of a consensus workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunol Res 4(4):279–288

    Article  Google Scholar 

  48. Thomas P, Thomsen M (2010) Implant allergies. Hautarzt 61(3):255–262, quiz 263-254

    Article  Google Scholar 

  49. Vadori M, Cozzi E (2015) The immunological barriers to xenotransplantation. Tissue Antigens 86(4):239–253

    Article  Google Scholar 

  50. Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83-A(3):428–436

    Article  Google Scholar 

  51. Mittal S, Revell M, Barone F et al (2013) Lymphoid aggregates that resemble tertiary lymphoid organs define a specific pathological subset in metal-on-metal hip replacements. PLoS One 8(5), e63470

    Article  Google Scholar 

  52. Manzo A, Paoletti S, Carulli M et al (2005) Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 35(5):1347–1359

    Article  Google Scholar 

  53. Takemura S, Braun A, Crowson C et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167(2):1072–1080

    Article  Google Scholar 

  54. Weyand CM, Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci 987:140–149

    Article  Google Scholar 

  55. Barone F, Bombardieri M, Manzo A et al (2005) Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren’s syndrome. Arthritis Rheum 52(6):1773–1784

    Article  Google Scholar 

  56. Armengol MP, Cardoso-Schmidt CB, Fernandez M et al (2003) Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol 170(12):6320–6328

    Article  Google Scholar 

  57. Jones GW, Jones SA (2016) Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 147(2):141–151

    Article  Google Scholar 

  58. Pearson MJ, Williams RL, Floyd H et al (2015) The effects of cobalt-chromium-molybdenum wear debris in vitro on serum cytokine profiles and T cell repertoire. Biomaterials 67:232–239

    Article  Google Scholar 

  59. Mitchell A, Guan W, Staggs R et al (2013) Identification of differentially expressed transcripts and pathways in blood one week and six months following implant of left ventricular assist devices. PLoS One 8(10), e77951

    Article  Google Scholar 

  60. Fishman JM, Lowdell MW, Urbani L et al (2013) Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci U S A 110(35):14360–14365

    Article  Google Scholar 

  61. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    Google Scholar 

  62. Lotze MT, Deisseroth A, Rubartelli A (2007) Damage associated molecular pattern molecules. Clin Immunol 124(1):1–4

    Article  Google Scholar 

  63. Ma B, Wang X, Wu C et al (2014) Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater 1(1):81–89

    Article  Google Scholar 

  64. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  Google Scholar 

  65. Zheng MH, Chen J, Kirilak Y et al (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67

    Article  Google Scholar 

  66. Acharya AP, Dolgova NV, Clare-Salzler MJ et al (2008) Adhesive substrate-modulation of adaptive immune responses. Biomaterials 29(36):4736–4750

    Article  Google Scholar 

  67. Brodbeck WG, Anderson JM (2009) Giant cell formation and function. Curr Opin Hematol 16(1):53–57

    Article  Google Scholar 

  68. Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280

    Article  Google Scholar 

  69. Hezi-Yamit A, Sullivan C, Wong J et al (2009) Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design. J Biomed Mater Res A 90(1):133–141

    Article  Google Scholar 

  70. Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83(3):585–596

    Article  Google Scholar 

  71. Kontos S, Grimm AJ, Hubbell JA (2015) Engineering antigen-specific immunological tolerance. Curr Opin Immunol 35:80–88

    Article  Google Scholar 

  72. Thaunat O, Patey N, Gautreau C et al (2008) B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation 85(11):1648–1653

    Article  Google Scholar 

  73. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457

    Article  Google Scholar 

  74. Fava RA, Kennedy SM, Wood SG et al (2011) Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjogren’s syndrome. Arthritis Res Ther 13(6):R182

    Article  Google Scholar 

  75. Fava RA, Notidis E, Hunt J et al (2003) A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol 171(1):115–126

    Article  Google Scholar 

  76. Gatumu MK, Skarstein K, Papandile A et al (2009) Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren’s syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 11(1):R24

    Article  Google Scholar 

  77. Lee Y, Chin RK, Christiansen P et al (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25(3):499–509

    Article  Google Scholar 

  78. Henry RA, Kendall PL (2010) CXCL13 blockade disrupts B lymphocyte organization in tertiary lymphoid structures without altering B cell receptor bias or preventing diabetes in nonobese diabetic mice. J Immunol 185(3):1460–1465

    Article  Google Scholar 

  79. Kramer JM, Klimatcheva TL, Rothstein E (2013) CXCL13 is elevated in Sjogren’s syndrome in mice and humans and is implicated in disease pathogenesis. J Leukoc Biol 94(5):1079–1089

    Article  Google Scholar 

  80. Zheng B, Ozen Z, Zhang X et al (2005) CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum 52(2):620–626

    Article  Google Scholar 

  81. Bucher C, Koch L, Vogtenhuber C et al (2009) IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation. Blood 114(26):5375–5384

    Article  Google Scholar 

  82. Herber D, Brown TP, Liang S et al (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 178(6):3822–3830

    Article  Google Scholar 

  83. Young DA, Hegen M, Ma HL et al (2007) Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum 56(4):1152–1163

    Article  Google Scholar 

  84. Arck PC, Rose M, Hertwig K et al (2001) Stress and immune mediators in miscarriage. Hum Reprod 16(7):1505–1511

    Article  Google Scholar 

  85. Ruter J, Hoffmann T, Heiser U et al (2002) The expression of T-cell surface antigens CTLA-4, CD26, and CD28 is modulated by inhibition of dipeptidylpeptidase IV (DPP IV, CD26) activity in murine stress-induced abortions. Cell Immunol 220(2):150–156

    Article  Google Scholar 

  86. Jungraithmayr W, De Meester I, Matheeussen V et al (2010) Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: the pivotal role of vasoactive intestinal peptide. Peptides 31(4):585–591

    Article  Google Scholar 

  87. Figueiredo C, Blasczyk R (2015) A future with less HLA: potential clinical applications of HLA-universal cells. Tissue Antigens 85(6):443–449

    Article  Google Scholar 

  88. Snanoudj R, Tinel C, Legendre C (2015) Immunological risks of minimization strategies. Transpl Int 28(8):901–910

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hildebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grass, S., Al-Ageel, S.K., Hildebrandt, M. (2017). T-Cell Mediated Immunomodulation and Transplant Optimization. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_12

Download citation

Publish with us

Policies and ethics