Skip to main content

Advancing Islet Transplantation: From Donor to Engraftment

  • Chapter
  • First Online:
  • 1927 Accesses

Abstract

Over the past few decades, tremendous efforts have been made to establish pancreatic islet transplantation as a standard therapy for the treatment of diabetes. Nevertheless, long-term efficacy has been limited to a marginal number of patients. Outcomes have been restricted, in part, by challenges associated with the transplant site, poor vascularization, and disruption of the native islet architecture during the isolation process. This chapter reviews possible solutions for the challenges encountered in the islet transplantation field, which include islet source limitation, suboptimal engraftment of islets, and lack of oxygen and blood supply for transplanted islets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Realsen J, Goettle H, Chase HP (2012) Morbidity and mortality of diabetic ketoacidosis with and without insulin pump care. Diabetes Technol Ther 14(12):1149–1154

    Article  Google Scholar 

  2. Giannini C, Mohn A, Chiarelli F (2009) Technology and the issue of cost/benefit in diabetes. Diabetes Metab Res Rev 25(Suppl 1):S34–S44

    Article  Google Scholar 

  3. Gaba MK, Gaba S, Clark LT (1999) Cardiovascular disease in patients with diabetes: clinical considerations. J Assoc Acad Minor Phys 10(1):15–22

    Google Scholar 

  4. Thompson DM, Meloche M, Ao Z et al (2011) Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91(3):373–378

    Article  Google Scholar 

  5. Noguchi H (2009) Pancreatic islet transplantation. World J Gastrointest Surg 1(1):16–20

    Article  Google Scholar 

  6. Warnock GL, Thompson DM, Meloche RM et al (2008) A multi-year analysis of islet transplantation compared with intensive medical therapy on progression of complications in type 1 diabetes. Transplantation 86(12):1762–1766

    Article  Google Scholar 

  7. Thompson DM, Begg IS, Harris C et al (2008) Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation 85(10):1400–1405

    Article  Google Scholar 

  8. Lehmann R, Graziano J, Brockmann J et al (2015) Glycemic control in simultaneous islet-kidney versus pancreas-kidney transplantation in type 1 diabetes: a prospective 13-year follow-up. Diabetes Care 38(5):752–759

    Article  Google Scholar 

  9. Hilling DE, Bouwman E, Terpstra OT et al (2014) Effects of donor-, pancreas-, and isolation-related variables on human islet isolation outcome: a systematic review. Cell Transplant 23(8):921–928

    Article  Google Scholar 

  10. Oniscu GC, Randle LV, Muiesan P et al (2014) In situ normothermic regional perfusion for controlled donation after circulatory death—the United Kingdom experience. Am J Transplant 14(12):2846–2854

    Article  Google Scholar 

  11. Farney AC, Sutherland DE, Opara EC (2016) Evolution of islet transplantation for the last 30 years. Pancreas 45(1):8–20

    Article  Google Scholar 

  12. Liljeback H, Grapensparr L, Olerud J et al (2016) Extensive loss of islet mass beyond the first day after intraportal human islet transplantation in a mouse model. Cell Transplant 25(3):481–489

    Article  Google Scholar 

  13. Grapensparr L, Vasylovska S, Li Z et al (2015) Co-transplantation of human pancreatic islets with post-migratory neural crest stem cells increases beta-cell proliferation and vascular and neural regrowth. J Clin Endocrinol Metab 100(4):E583–E590

    Article  Google Scholar 

  14. Lau J, Vasylovska S, Kozlova EN et al (2015) Surface coating of pancreatic islets with neural crest stem cells improves engraftment and function after intraportal transplantation. Cell Transplant 24(11):2263–2272

    Article  Google Scholar 

  15. Naziruddin B, Iwahashi S, Kanak MA et al (2014) Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am J Transplant 14(2):428–437

    Article  Google Scholar 

  16. Pepper AR, Gala-Lopez B, Ziff O et al (2013) Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin Dev Immunol 2013:352315

    Article  Google Scholar 

  17. Robertson RP (2002) Islet transplantation: travels up the learning curve. Curr Diab Rep 2(4):365–370

    Article  Google Scholar 

  18. Bruni A, Gala-Lopez B, Pepper AR et al (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223

    Google Scholar 

  19. Matsumoto S, Rigley TH, Qualley SA et al (2002) Efficacy of the oxygen-charged static two-layer method for short-term pancreas preservation and islet isolation from nonhuman primate and human pancreata. Cell Transplant 11(8):769–777

    Google Scholar 

  20. Fraga DW, Sabek O, Hathaway DK et al (1998) A comparison of media supplement methods for the extended culture of human islet tissue. Transplantation 65(8):1060–6

    Article  Google Scholar 

  21. Gaber AO, Fraga DW, Callicutt CS et al (2001) Improved in vivo pancreatic islet function after prolonged in vitro islet culture. Transplantation 72(11):1730–1736

    Article  Google Scholar 

  22. Odorico JS, Heisey DM, Voss BJ et al (1998) Donor factors affecting outcome after pancreas transplantation. Transplant Proc 30(2):276–277

    Article  Google Scholar 

  23. Rush BT, Fraga DW, Kotb MY et al (2004) Preservation of human pancreatic islet in vivo function after 6-month culture in serum-free media. Transplantation 77(8):1147–1154

    Article  Google Scholar 

  24. Markmann JF, Deng S, Desai NM et al (2003) The use of non-heart-beating donors for isolated pancreatic islet transplantation. Transplantation 75(9):1423–1429

    Article  Google Scholar 

  25. Iwanaga Y, Sutherland DE, Harmon JV et al (2008) Pancreas preservation for pancreas and islet transplantation. Curr Opin Organ Transplant 13(2):135–141

    Article  Google Scholar 

  26. Liu X, Matsumoto S, Okitsu T et al (2008) Analysis of donor- and isolation-related variables from non-heart-beating donors (NHBDs) using the Kyoto islet isolation method. Cell Transplant 17(6):649–656

    Article  Google Scholar 

  27. Andrades P, Asiedu CK, Gansuvd B et al (2008) Pancreatic islet isolation variables in non-human primates (rhesus macaques). Diabetologia 51(7):1236–1244

    Article  Google Scholar 

  28. Sabek O, Cowan P, Fraga D et al (2006) The effect of donor factors on human islet yield and their in vivo function. Progess Transplant 16(4):350–354

    Article  Google Scholar 

  29. Ponte GM, Pileggi A, Messinger S et al (2007) Toward maximizing the success rates of human islet isolation: influence of donor and isolation factors. Cell Transplant 16(6):595–607

    Article  Google Scholar 

  30. Rosendale JD, Kauffman HM, McBride MA et al (2003) Aggressive pharmacologic donor management results in more transplanted organs. Transplantation 75(4):482–487

    Article  Google Scholar 

  31. Mahler R, Franke FE, Hering BJ et al (1999) Evidence for a significant correlation of donor pancreas morphology and the yield of isolated purified human islets. J Mol Med 77(1):87–89

    Article  Google Scholar 

  32. Sabek OM, Cowan P, Fraga DW et al (2008) The effect of isolation methods and the use of different enzymes on islet yield and in vivo function. Cell Transplant 17(7):785–792

    Article  Google Scholar 

  33. Sabek O, Hathaway D, Fraga D et al (1998) Influence of human donor factors on pancreatic collagenase digestion. Transplant Proc 30(2):353

    Article  Google Scholar 

  34. Sabek OM, Marshall DR, Minoru O et al (2005) Gene expression profile of nonfunctional human pancreatic islets: predictors of transplant failure? Transplant Proc 37(8):3441–3443

    Article  Google Scholar 

  35. Sabek OM, Nishimoto SK, Fraga D et al (2015) Osteocalcin effect on human beta-cells mass and function. Endocrinology 156(9):3137–3146

    Article  Google Scholar 

  36. Lakey JR, Helms LM, Kin T et al (2001) Serine-protease inhibition during islet isolation increases islet yield from human pancreases with prolonged ischemia. Transplantation 72(4):565–570

    Article  Google Scholar 

  37. Brandhorst D, Brandhorst H, Hering BJ et al (1995) Islet isolation from the pancreas of large mammals and humans: 10 years of experience. Exp Clin Endocrinol Diabetes 103(Suppl 2):3–14

    Article  Google Scholar 

  38. Matsumoto S, Kuroda Y (2002) Perfluorocarbon for organ preservation before transplantation. Transplantation 74(12):1804–1809

    Article  Google Scholar 

  39. Kim SC, Han DJ, Kang CH et al (2005) Analysis on donor and isolation-related factors of successful isolation of human islet of Langerhans from human cadaveric donors. Transplant Proc 37(8):3402–3403

    Article  Google Scholar 

  40. Hanley SC, Paraskevas S, Rosenberg L (2008) Donor and isolation variables predicting human islet isolation success. Transplantation 85(7):950–955

    Article  Google Scholar 

  41. Matsumoto S, Zhang G, Qualley S et al (2004) Analysis of donor factors affecting human islet isolation with current isolation protocol. Transplant Proc 36(4):1034–1036

    Article  Google Scholar 

  42. Benhamou PY, Watt PC, Mullen Y et al (1994) Human islet isolation in 104 consecutive cases. Factors affecting isolation success. Transplantation 57(12):1804–1810

    Article  Google Scholar 

  43. Larsson H, Ahren B (1996) Failure to adequately adapt reduced insulin sensitivity with increased insulin secretion in women with impaired glucose tolerance. Diabetologia 39(9):1099–1107

    Article  Google Scholar 

  44. Larsson H, Ahren B (1996) Islet dysfunction in obese women with impaired glucose tolerance. Metabolism 45(4):502–509

    Article  Google Scholar 

  45. Larsson H, Berglund G, Ahren B (1995) Glucose modulation of insulin and glucagon secretion is altered in impaired glucose tolerance. J Clin Endocrinol Metab 80(6):1778–1782

    Google Scholar 

  46. Dionne KE, Colton CK, Yarmush ML (1989) Effect of oxygen on isolated pancreatic tissue. ASAIO Trans 35(3):739–741

    Article  Google Scholar 

  47. Rosso D, Carnazzo G, Giarelli L et al (2001) Atherosclerosis and pancreatic damage. Arch Gerontol Geriatr 32(2):95–100

    Article  Google Scholar 

  48. Culberson DE, Manci EA, Shah AK et al (2001) Nesidioblastosis in sickle cell disease. Pediatr Pathol Mol Med 20(2):155–165

    Article  Google Scholar 

  49. Sweet IR, Khalil G, Wallen AR et al (2002) Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol Ther 4(5):661–672

    Article  Google Scholar 

  50. Moritz W, Meier F, Stroka DM et al (2002) Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. FASEB J 16(7):745–747

    Google Scholar 

  51. Juang JH, Hsu BR, Kuo CH et al (2002) Beneficial effects of hyperbaric oxygen therapy on islet transplantation. Cell Transplant 11(2):95–101

    Google Scholar 

  52. Hughes SJ, Davies SE, Powis SH et al (2003) Hyperoxia improves the survival of intraportally transplanted syngeneic pancreatic islets. Transplantation 75(12):1954–1959

    Article  Google Scholar 

  53. Schrezenmeir J, Velten F, Beyer J (1994) Immobilized hemoglobin improves islet function and viability in the bioartificial pancreas in vitro and in vivo. Transplant Proc 26(2):792–800

    Google Scholar 

  54. Marshall D, Sabek O, Fraga D et al (2005) Examination of the molecular signature associated with islet dysfunction. Transplant Proc 37(2):1311–1312

    Article  Google Scholar 

  55. Sabek OM, Hamilton DJ, Gaber AO (2009) Prospects for future advancements in islet cell transplantation. Minerva Chir 64(1):59–73

    Google Scholar 

  56. White MG, Marshall HL, Rigby R et al (2013) Expression of mesenchymal and alpha-cell phenotypic markers in islet beta-cells in recently diagnosed diabetes. Diabetes Care 36(11):3818–3820

    Article  Google Scholar 

  57. Guo S, Dai C, Guo M et al (2013) Inactivation of specific beta cell transcription factors in type 2 diabetes. J Clin Invest 123(8):3305–3316

    Article  Google Scholar 

  58. Qi M, McFadden B, Valiente L et al (2015) Human pancreatic islets isolated from donors with elevated HbA1c levels: islet yield and graft efficacy. Cell Transplant 24(9):1879–1886

    Article  Google Scholar 

  59. White MF (2003) Insulin signaling in health and disease. Science 302(5651):1710–1711

    Article  Google Scholar 

  60. Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  Google Scholar 

  61. Butler AE, Janson J, Soeller WC et al (2003) Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304–2314

    Article  Google Scholar 

  62. Bogardus C, Lillioja S, Howard BV et al (1984) Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J Clin Invest 74(4):1238–1246

    Article  Google Scholar 

  63. Weyer C, Bogardus C, Mott DM et al (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104(6):787–794

    Article  Google Scholar 

  64. Wajchenberg BL (2007) Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28(2):187–218

    Article  Google Scholar 

  65. Donath MY, Schumann DM, Faulenbach M et al (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):S161–S164

    Article  Google Scholar 

  66. Kahn BB (1996) Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 45(11):1644–1654

    Article  Google Scholar 

  67. Kahn SE, Leonetti DL, Prigeon RL et al (1996) Proinsulin levels predict the development of non-insulin-dependent diabetes mellitus (NIDDM) in Japanese-American men. Diabet Med 13(9 Suppl 6):S63–S66

    Google Scholar 

  68. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61

    Article  Google Scholar 

  69. Robertson RP, Harmon J, Tran PO et al (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52(3):581–587

    Article  Google Scholar 

  70. Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47(3):581–589

    Article  Google Scholar 

  71. Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461

    Article  Google Scholar 

  72. Grill V, Bjorklund A (2001) Overstimulation and beta-cell function. Diabetes 50(Suppl 1):S122–S124

    Article  Google Scholar 

  73. Newsholme P, Haber EP, Hirabara SM et al (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583(Pt 1):9–24

    Article  Google Scholar 

  74. Maedler K, Oberholzer J, Bucher P et al (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52(3):726–733

    Article  Google Scholar 

  75. Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45(1):42–72

    Article  Google Scholar 

  76. Poitout V (2008) Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochem Soc Trans 36(Pt 5):901–904

    Article  Google Scholar 

  77. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29(3):351–366

    Article  Google Scholar 

  78. Lakey JR, Warnock GL, Rajotte RV et al (1996) Variables in organ donors that affect the recovery of human islets of Langerhans. Transplantation 61(7):1047–1053

    Article  Google Scholar 

  79. Toso C, Oberholzer J, Ris F et al (2002) Factors affecting human islet of Langerhans isolation yields. Transplant Proc 34(3):826–827

    Article  Google Scholar 

  80. Heikes KE, Eddy DM, Arondekar B et al (2008) Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care 31(5):1040–1045

    Article  Google Scholar 

  81. Abdul-Ghani MA, Matsuda M, Jani R et al (2008) The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 295(2):E401–E406

    Article  Google Scholar 

  82. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  Google Scholar 

  83. Shungin D, Winkler TW, Croteau-Chonka DC et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518(7538):187–196

    Article  Google Scholar 

  84. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470

    Article  Google Scholar 

  85. Teuscher AU, Kendall DM, Smets YF et al (1998) Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes 47(3):324–330

    Article  Google Scholar 

  86. Nath DS, Kellogg TA, Sutherland DE (2004) Total pancreatectomy with intraportal auto-islet transplantation using a temporarily exteriorized omental vein. J Am Coll Surg 199(6):994–995

    Article  Google Scholar 

  87. Webb MA, Illouz SC, Pollard CA et al (2008) Islet auto transplantation following total pancreatectomy: a long-term assessment of graft function. Pancreas 37(3):282–287

    Article  Google Scholar 

  88. Kuroda Y, Fujino Y, Morita A et al (1992) Oxygenation of the human pancreas during preservation by a two-layer (University of Wisconsin solution/perfluorochemical) cold-storage method. Transplantation 54(3):561–562

    Article  Google Scholar 

  89. Kuroda Y, Fujino Y, Kawamura T et al (1990) Mechanism of oxygenation of pancreas during preservation by a two-layer (Euro-Collins’ solution/perfluorochemical) cold-storage method. Transplantation 49(4):694–696

    Article  Google Scholar 

  90. Matsumoto S, Qualley SA, Goel S et al (2002) Effect of the two-layer (University of Wisconsin solution-perfluorochemical plus O2) method of pancreas preservation on human islet isolation, as assessed by the Edmonton Isolation Protocol. Transplantation 74(10):1414–1419

    Article  Google Scholar 

  91. Lakey JR, Kneteman NM, Rajotte RV et al (2002) Effect of core pancreas temperature during cadaveric procurement on human islet isolation and functional viability. Transplantation 73(7):1106–1110

    Article  Google Scholar 

  92. Lakey JR, Tsujimura T, Shapiro AM et al (2002) Preservation of the human pancreas before islet isolation using a two-layer (UW solution-perfluorochemical) cold storage method. Transplantation 74(12):1809–1811

    Article  Google Scholar 

  93. Ricordi C, Fraker C, Szust J et al (2003) Improved human islet isolation outcome from marginal donors following addition of oxygenated perfluorocarbon to the cold-storage solution. Transplantation 75(9):1524–1527

    Article  Google Scholar 

  94. Tsujimura T, Kuroda Y, Avila JG et al (2004) Influence of pancreas preservation on human islet isolation outcomes: impact of the two-layer method. Transplantation 78(1):96–100

    Article  Google Scholar 

  95. Brandhorst H, Muehling B, Yamaya H et al (2008) New class of oxygen carriers improves islet isolation from long-term stored rat pancreata. Transplant Proc 40(2):393–394

    Article  Google Scholar 

  96. Saito T, Gotoh M, Satomi S et al (2010) Islet transplantation using donors after cardiac death: report of the Japan Islet Transplantation Registry. Transplantation 90(7):740–747

    Article  Google Scholar 

  97. Matsumoto S, Rigley TH, Reems JA et al (2003) Improved islet yields from Macaca nemestrina and marginal human pancreata after two-layer method preservation and endogenous trypsin inhibition. Am J Transplant 3(1):53–63

    Article  Google Scholar 

  98. Al-Abdullah IH, Bentsi-Barnes K, Valiente L et al (2008) Testing combinations of protease inhibitor and preservation solution to improve islet quality and yield. Transplant Proc 40(2):390–392

    Article  Google Scholar 

  99. Rose NL, Palcic MM, Helms LM et al (2003) Evaluation of Pefabloc as a serine protease inhibitor during human-islet isolation. Transplantation 75(4):462–466

    Article  Google Scholar 

  100. Lee TC, Barshes NR, Brunicardi FC et al (2004) Procurement of the human pancreas for pancreatic islet transplantation. Transplantation 78(3):481–483

    Article  Google Scholar 

  101. Guignard AP, Oberholzer J, Benhamou PY et al (2004) Cost analysis of human islet transplantation for the treatment of type 1 diabetes in the Swiss-French Consortium GRAGIL. Diabetes Care 27(4):895–900

    Article  Google Scholar 

  102. Huang GC, Zhao M, Jones P et al (2004) The development of new density gradient media for purifying human islets and islet-quality assessments. Transplantation 77(1):143–145

    Article  Google Scholar 

  103. Nano R, Clissi B, Melzi R et al (2005) Islet isolation for allotransplantation: variables associated with successful islet yield and graft function. Diabetologia 48(5):906–912

    Article  Google Scholar 

  104. Ricordi C, Lacy PE, Finke EH et al (1988) Automated method for isolation of human pancreatic islets. Diabetes 37(4):413–420

    Article  Google Scholar 

  105. Robertson GS, Chadwick DR, Contractor H et al (1993) The use of continuous density gradients for the assessment of islet and exocrine tissue densities and islet purification. Acta Diabetol 30(3):175–180

    Article  Google Scholar 

  106. Robertson GS, Chadwick DR, Contractor H et al (1993) The optimization of large-scale density gradient isolation of human islets. Acta Diabetol 30(2):93–98

    Article  Google Scholar 

  107. Jansson L (1994) The regulation of pancreatic islet blood flow. Diabetes Metab Rev 10(4):407–416

    Article  Google Scholar 

  108. Parr EL, Bowen KM, Lafferty KJ (1980) Cellular changes in cultured mouse thyroid glands and islets of Langerhans. Transplantation 30(2):135–141

    Article  Google Scholar 

  109. Cross SE, Hughes SJ, Partridge CJ et al (2008) Collagenase penetrates human pancreatic islets following standard intraductal administration. Transplantation 86(7):907–911

    Article  Google Scholar 

  110. O’Gorman D, Kin T, Murdoch T et al (2005) The standardization of pancreatic donors for islet isolations. Transplantation 80(6):801–806

    Article  Google Scholar 

  111. Bucher P, Mathe Z, Morel P et al (2005) Assessment of a novel two-component enzyme preparation for human islet isolation and transplantation. Transplantation 79(1):91–97

    Article  Google Scholar 

  112. Bucher P, Bosco D, Mathe Z et al (2004) Optimization of neutral protease to collagenase activity ratio for islet of Langerhans isolation. Transplant Proc 36(4):1145–1146

    Article  Google Scholar 

  113. Antonioli B, Fermo I, Cainarca S et al (2007) Characterization of collagenase blend enzymes for human islet transplantation. Transplantation 84(12):1568–1575

    Article  Google Scholar 

  114. van der Burg MP, Guicherit OR, Frolich M et al (1994) Impact of donor-related variables on islet isolation outcome in dogs. Diabetologia 37(1):111–114

    Article  Google Scholar 

  115. London NJ, James R, Bell PR et al (1992) Islet purification. In: Pancreatic islet transplantation. Ed Landes:113

    Google Scholar 

  116. London NJM, James RFL, Bell PRF (1992) Pancreatic islet transplantation, islet purification. In: Ricordi C (ed) Vol. Chapter 11. Landes, Austin, pp 113–131

    Google Scholar 

  117. Pretlow TG II (1975) Disaggregation of prostates and purification of epithelial cells from normal and cancerous prostates using sedimentation in an isokinetic density gradient of Ficoll in tissue culture medium. Cancer Chemother Rep 1 59(1):143–145

    Google Scholar 

  118. Schwartz BD, Traverso LW (1984) Morphological changes in pancreatic fragments prepared for transplantation by collagenase treatment. Transplantation 38(3):273–280

    Article  Google Scholar 

  119. Burg MB, Orloff J (1964) Active cation transport by kidney tubules at OC. Am J Physiol 207:983–988

    Google Scholar 

  120. Goss JA, Schock AP, Brunicardi FC et al (2002) Achievement of insulin independence in three consecutive type-1 diabetic patients via pancreatic islet transplantation using islets isolated at a remote islet isolation center. Transplantation 74(12):1761–1766

    Article  Google Scholar 

  121. MacKenzie DA, Sollinger HW, Hullett DA (2003) Removal of CD45+ cells from human fetal pancreas alters immunogenicity in vitro. Transplant Proc 35(4):1506–1507

    Article  Google Scholar 

  122. Scharp DW, Lacy PE, Finke E et al (1987) Low-temperature culture of human islets isolated by the distention method and purified with Ficoll or Percoll gradients. Surgery 102(5):869–879

    Google Scholar 

  123. Sabek OM, Marshall DR, Penmetsa R et al (2006) Examination of gene expression profile of functional human pancreatic islets after 2-week culture. Transplant Proc 38(10):3678–3679

    Article  Google Scholar 

  124. Cattan P, Berney T, Schena S et al (2001) Early assessment of apoptosis in isolated islets of Langerhans. Transplantation 71(7):857–862

    Article  Google Scholar 

  125. Caulin-Glaser T, Watson CA, Pardi R et al (1996) Effects of 17beta-estradiol on cytokine-induced endothelial cell adhesion molecule expression. J Clin Invest 98(1):36–42

    Article  Google Scholar 

  126. Lacy PE, Davie JM, Finke EH (1979) Prolongation of islet allograft survival following in vitro culture (24 degrees C) and a single injection of ALS. Science 204(4390):312–313

    Article  Google Scholar 

  127. Schmied BM, Ulrich A, Matsuzaki H et al (2000) Maintenance of human islets in long-term culture. Differentiation 66(4-5):173–180

    Article  Google Scholar 

  128. Schmied BM, Ulrich A, Matsuzaki H et al (2001) Transdifferentiation of human islet cells in a long-term culture. Pancreas 23(2):157–171

    Article  Google Scholar 

  129. Schmied BM, Liu G, Matsuzaki H et al (2000) Differentiation of islet cells in long-term culture. Pancreas 20(4):337–347

    Article  Google Scholar 

  130. Buitrago A, Gylfe E (1983) Significance of serum for the preservation of insulin secretion during culture. Med Biol 61(2):133–138

    Google Scholar 

  131. Yuan S, Rosenberg L, Paraskevas S et al (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61(1):67–75

    Article  Google Scholar 

  132. Wang J, Zhang X (2001) Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal Chem 73(4):844–847

    Article  Google Scholar 

  133. Thomas FT, Contreras JL, Bilbao G et al (1999) Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 126(2):299–304

    Article  Google Scholar 

  134. Rutzky LP, Bilinski S, Kloc M et al (2002) Microgravity culture condition reduces immunogenicity and improves function of pancreatic islets. Transplantation 74(1):13–21

    Article  Google Scholar 

  135. Beattie GM, Montgomery AM, Lopez AD et al (2002) A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51(12):3435–3439

    Article  Google Scholar 

  136. Contreras JL, Smyth CA, Bilbao G et al (2002) 17beta-Estradiol protects isolated human pancreatic islets against proinflammatory cytokine-induced cell death: molecular mechanisms and islet functionality. Transplantation 74(9):1252–1259

    Article  Google Scholar 

  137. Sabek OM, Fraga DW, Henry J et al (2007) Expression of transforming growth factor-beta by human islets: impact on islet viability and function. Cell Transplant 16(8):775–785

    Article  Google Scholar 

  138. Beattie GM, Cirulli V, Lopez AD et al (1997) Ex vivo expansion of human pancreatic endocrine cells. J Clin Endocrinol Metab 82(6):1852–1856

    Google Scholar 

  139. Beattie GM, Otonkoski T, Lopez AD et al (1997) Functional beta-cell mass after transplantation of human fetal pancreatic cells: differentiation or proliferation? Diabetes 46(2):244–248

    Article  Google Scholar 

  140. Beattie GM, Rubin JS, Mally MI et al (1996) Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 45(9):1223–1228

    Article  Google Scholar 

  141. Otonkoski T, Beattie GM, Rubin JS et al (1994) Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 43(7):947–953

    Article  Google Scholar 

  142. Otonkoski T, Mally MI, Hayek A (1994) Opposite effects of beta-cell differentiation and growth on Reg expression in human fetal pancreatic cells. Diabetes 43(9):1164–1166

    Article  Google Scholar 

  143. Dionne KE, Colton CK, Yarmush ML (1993) Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42(1):12–21

    Article  Google Scholar 

  144. Gaber AO, Fraga D, Kotb M et al (2004) Human islet graft function in NOD-SCID mice predicts clinical response in islet transplant recipients. Transplant Proc 36(4):1108–1110

    Article  Google Scholar 

  145. Hubert T, Strecker G, Gmyr V et al (2008) Acute insulin response to arginine in deceased donors predicts the outcome of human islet isolation. Am J Transplant 8(4):872–876

    Article  Google Scholar 

  146. Sabek OM, Fraga DW, Minoru O et al (2005) Assessment of human islet viability using various mouse models. Transplant Proc 37(8):3415–3416

    Article  Google Scholar 

  147. Gerling IC, Kotb M, Fraga D et al (1998) No correlation between in vitro and in vivo function of human islets. Transplant Proc 30(2):587–588

    Article  Google Scholar 

  148. Sweet IR, Gilbert M, Jensen R et al (2005) Glucose stimulation of cytochrome C reduction and oxygen consumption as assessment of human islet quality. Transplantation 80(8):1003–1011

    Article  Google Scholar 

  149. Dobson T, Fraga D, Saba C et al (2000) Human pancreatic islets transfected to produce an inhibitor of TNF are protected against destruction by human leukocytes. Cell Transplant 9(6):857–865

    Google Scholar 

  150. Narang AS, Sabek O, Gaber AO et al (2006) Co-expression of vascular endothelial growth factor and interleukin-1 receptor antagonist improves human islet survival and function. Pharm Res 23(9):1970–1982

    Article  Google Scholar 

  151. Narang AS, Cheng K, Henry J et al (2004) Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm Res 21(1):15–25

    Article  Google Scholar 

  152. Hardstedt M, Lindblom S, Karlsson-Parra A et al (2016) Characterization of innate immunity in an extended whole blood model of human islet allotransplantation. Cell Transplant 25(3):503–515

    Article  Google Scholar 

  153. Kourtzelis I, Kotlabova K, Lim JH et al (2016) Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation. Thromb Haemost 115(4):781–788

    Article  Google Scholar 

  154. Xiao F, Ma L, Zhao M et al (2016) APT070 (mirococept), a membrane-localizing C3 convertase inhibitor, attenuates early human islet allograft damage in vitro and in vivo in a humanized mouse model. Br J Pharmacol 173(3):575–587

    Article  Google Scholar 

  155. Chhabra P, Linden J, Lobo P et al (2012) The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 8(6):419–433

    Article  Google Scholar 

  156. Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab 19(3):498–511

    Article  Google Scholar 

  157. Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53(5):1318–1325

    Article  Google Scholar 

  158. Ullsten S, Lau J, Carlsson PO (2015) Vascular heterogeneity between native rat pancreatic islets is responsible for differences in survival and revascularisation post transplantation. Diabetologia 58(1):132–139

    Article  Google Scholar 

  159. Lau J, Mattsson G, Carlsson C et al (2007) Implantation site-dependent dysfunction of transplanted pancreatic islets. Diabetes 56(6):1544–1550

    Article  Google Scholar 

  160. Lau J, Carlsson PO (2009) Low revascularization of human islets when experimentally transplanted into the liver. Transplantation 87(3):322–325

    Article  Google Scholar 

  161. Kang S, Park HS, Jo A et al (2012) Endothelial progenitor cell cotransplantation enhances islet engraftment by rapid revascularization. Diabetes 61(4):866–876

    Article  Google Scholar 

  162. Paget MB, Murray HE, Bailey CJ et al (2011) Rotational co-culture of clonal beta-cells with endothelial cells: effect of PPAR-gamma agonism in vitro on insulin and VEGF secretion. Diabetes Obes Metab 13(7):662–668

    Article  Google Scholar 

  163. Espes D, Lau J, Quach M et al (2015) Cotransplantation of polymerized hemoglobin reduces beta-cell hypoxia and improves beta-cell function in intramuscular islet grafts. Transplantation 99(10):2077–2082

    Article  Google Scholar 

  164. Zhang N, Richter A, Suriawinata J et al (2004) Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53(4):963–970

    Article  Google Scholar 

  165. Borg DJ, Weigelt M, Wilhelm C et al (2014) Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model. Diabetologia 57(3):522–531

    Article  Google Scholar 

  166. Buitinga M, Janeczek Portalska K, Cornelissen DJ et al (2016) Coculturing human islets with proangiogenic support cells to improve islet revascularization at the subcutaneous transplantation site. Tissue Eng Part A 22(3-4):375–385

    Article  Google Scholar 

  167. Cao XK, Li R, Sun W et al (2016) Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis. Biomed Pharmacother 78:156–164

    Article  Google Scholar 

  168. Fransson M, Brannstrom J, Duprez I et al (2015) Mesenchymal stromal cells support endothelial cell interactions in an intramuscular islet transplantation model. Regen Med Res 3:1

    Article  Google Scholar 

  169. Park KS, Kim YS, Kim JH et al (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89(5):509–517

    Google Scholar 

  170. Lehmann R, Zuellig RA, Kugelmeier P et al (2007) Superiority of small islets in human islet transplantation. Diabetes 56(3):594–603

    Article  Google Scholar 

  171. Li W, Zhao R, Liu J et al (2014) Small islets transplantation superiority to large ones: implications from islet microcirculation and revascularization. J Diabetes Res 2014:192093

    Google Scholar 

  172. Motte E, Szepessy E, Suenens K et al (2014) Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab 307(9):E838–E846

    Article  Google Scholar 

  173. Pepper AR, Pawlick R, Gala-Lopez B et al (2015) Diabetes is reversed in a murine model by marginal mass syngeneic islet transplantation using a subcutaneous cell pouch device. Transplantation 99(11):2294–2300

    Article  Google Scholar 

  174. Sabek OM, Ferrati S, Fraga DW et al (2013) Characterization of a nanogland for the autotransplantation of human pancreatic islets. Lab Chip 13(18):3675–3688

    Article  Google Scholar 

  175. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651

    Article  Google Scholar 

  176. Duvivier-Kali VF, Omer A, Parent RJ et al (2001) Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50(8):1698–1705

    Article  Google Scholar 

  177. Llacua A, de Haan BJ, Smink SA et al (2016) Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J Biomed Mater Res A 104(7):1788–96

    Article  Google Scholar 

  178. Omer A, Duvivier-Kali V, Fernandes J et al (2005) Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79(1):52–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omaima M. Sabek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sabek, O.M. (2017). Advancing Islet Transplantation: From Donor to Engraftment. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_10

Download citation

Publish with us

Policies and ethics