Skip to main content

Host Response to Implanted Materials and Devices: An Overview

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

The host response to implanted materials and devices is influenced not only by the design of the material itself, but also by the local and systemic environment of the host. Much of the early response follows the well-described cascade of events of wound healing from hemostasis to scar formation. An implanted material can positively or negatively modulate this cascade of events, culminating in a constructive remodeling response, a persistent inflammatory response, a foreign body response with encapsulation, or an adaptive immune response. An overview of these events, as well as the influence of biologic versus synthetic materials, is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Key N, Makris M, O’Shaughnessy D et al (2009) Practical hemostasis and thrombosis. Wiley-Blackwell, Oxford, p 328

    Book  Google Scholar 

  2. Furie BC, Furie B (2005) Thrombus formation in vivo. J Clin Invest 115(12):3355–3362

    Article  Google Scholar 

  3. Anderson J, Cramer S (2015) Perspectives on the inflammatory, healing, and foreign body responses to biomaterials and medical devices. In: Badylak SF (ed) Host response to biomaterials: the impact of host response on biomaterial selection. Elsevier, New York

    Google Scholar 

  4. Eming SA, Krieg JM, Davidson T (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525

    Article  Google Scholar 

  5. Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43

    Article  Google Scholar 

  6. Anderson JM, Rodriguez DT, Chang A (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  Google Scholar 

  7. Konttinen YT, Pajarinen J, Takakubo Y et al (2014) Macrophage polarization and activation in response to implant debris: influence by “particle disease” and “ion disease”. J Long Term Eff Med Implants 24(4):267–281

    Article  Google Scholar 

  8. Park JE, Babensee J (2012) Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater 8(10):3606–3617

    Article  Google Scholar 

  9. Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85(1):9–18, quiz 18, 21

    Article  Google Scholar 

  10. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  Google Scholar 

  11. Ansaloni L, Cambrini P, Catena F et al (2007) Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg 20(4):237–241

    Article  Google Scholar 

  12. McNally AK, DeFife KM, Anderson JM (1996) Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity. Am J Pathol 149(3):975–985

    Google Scholar 

  13. Higgins DM, Basaraba RJ, Hohnbaum AC et al (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175(1):161–170

    Article  Google Scholar 

  14. Gratchev A, Kzhyshkowska J, Utikal J et al (2005) Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 61(1):10–17

    Article  Google Scholar 

  15. Mills CD, Ley K (2014) M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 6(6):716–726

    Article  Google Scholar 

  16. Allman AJ, McPherson TB, Badylak SF et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640

    Article  Google Scholar 

  17. Allman AJ, McPherson TB, Merrill LC et al (2002) The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng 8(1):53–62

    Article  Google Scholar 

  18. Acharya AP, Dolgova NV, Clare-Salzler MJ et al (2008) Adhesive substrate-modulation of adaptive immune responses. Biomaterials 29(36):4736–4750

    Article  Google Scholar 

  19. Fishman J, Wiles K, Wood K (2015) The acquired immune system response to biomaterials, including both naturally occurring and synthetic biomaterials. In: Badylak SF (ed) Host response to biomaterials: the impact of host response on biomaterial selection. Elsevier, New York

    Google Scholar 

  20. Badylak SF (2014) Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42(7):1517–1527

    Article  Google Scholar 

  21. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  Google Scholar 

  22. Brown BN, Badylak SF (2014) Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 163(4):268–285

    Article  Google Scholar 

  23. Brown BN, Londono R, Tottey S et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987

    Article  Google Scholar 

  24. Valentin JE, Stewart-Akers AM, Gilbert TW et al (2009) Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 15(7):1687–1694

    Article  Google Scholar 

  25. Leid JM, Carrelha J, Boukarabila H et al (2016) Primitive embryonic macrophages are required for coronary development and maturation. Circ Res 118(10):1498–1511

    Article  Google Scholar 

  26. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455

    Article  Google Scholar 

  27. Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260(1):102–117

    Article  Google Scholar 

  28. Ginhoux S, Jung F (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404

    Article  Google Scholar 

  29. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110(23):9415–9420

    Article  Google Scholar 

  30. Brown BN, Ratner BD, Goodman SB et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802

    Article  Google Scholar 

  31. Sridharan R, Cameron AR, Kelly DJ et al (2015) Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today 18(6):13

    Article  Google Scholar 

  32. Vroman L, Adams AL, Fischer GC et al (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55(1):156–159

    Google Scholar 

  33. Vogler EA (2012) Protein adsorption in three dimensions. Biomaterials 33(5):1201–1237

    Article  Google Scholar 

  34. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51(4):239–240, passim

    Google Scholar 

  35. Asawa Y, Sakamoto T, Komura M et al (2012) Early stage foreign body reaction against biodegradable polymer scaffolds affects tissue regeneration during the autologous transplantation of tissue-engineered cartilage in the canine model. Cell Transplant 21(7):1431–1442

    Article  Google Scholar 

  36. Felländer-Tsai L, Reinholt FP, Turan I (1997) Complications with infection and foreign body reaction after silicone implant arthroplasty in the second metatarsophalangeal joint in an adolescent: a case report. J Foot Ankle Surg 36(6):452–456

    Article  Google Scholar 

  37. Florin W, Mandel L (2012) Foreign body reaction to facial dermal fillers: case report. J Oral Maxillofac Surg 70(10):2352–2355

    Article  Google Scholar 

  38. Hale CS, Patel RR, Meehan S (2011) Polyurethane foam: an underrecognized cause of foreign body granulomas. J Cutan Pathol 38(10):838–839

    Google Scholar 

  39. Khandwekar AP, Patil DP, Hardikar AA et al (2010) In vivo modulation of foreign body response on polyurethane by surface entrapment technique. J Biomed Mater Res A 95(2):413–423

    Article  Google Scholar 

  40. Mamelak AJ, Katz TM, Goldberg LH et al (2009) Foreign body reaction to hyaluronic acid filler injection: in search of an etiology. Dermatol Surg 35(Suppl 2):1701–1703

    Article  Google Scholar 

  41. Veleirinho B, Coelho DS, Dias PF et al (2014) Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes. PLoS One 9(4), e95293

    Article  Google Scholar 

  42. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  Google Scholar 

  43. Brown BN, Valentin JE, Stewart-Akers AM et al (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491

    Article  Google Scholar 

  44. Wolf MT, Dearth CL, Ranallo CA et al (2014) Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials 35(25):6838–6849

    Article  Google Scholar 

  45. Agrawal V, Kelly J, Tottey S et al (2011) An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng Part A 17(23-24):3033–3044

    Article  Google Scholar 

  46. Agrawal V, Tottey S, Johnson SA et al (2011) Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A 17(19-20):2435–2443

    Article  Google Scholar 

  47. Engler AJ, Sweeney HL, Discher DE et al (2007) Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact 7(4):335

    Google Scholar 

  48. Bissell MJ, Aggeler J (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249:251–262

    Google Scholar 

  49. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  Google Scholar 

  50. Davis GE (1992) Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 182(3):1025–1031

    Article  Google Scholar 

  51. Mogford JE, Davis GE, Platts SH et al (1996) Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ Res 79(4):821–826

    Article  Google Scholar 

  52. Laskin DL, Kimura T, Sakakibara S et al (1986) Chemotactic activity of collagen-like polypeptides for human peripheral blood neutrophils. J Leukoc Biol 39(3):255–266

    Google Scholar 

  53. Albini A, Adelmann-Grill BC (1985) Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts. Eur J Cell Biol 36(1):104–107

    Google Scholar 

  54. Banerjee P, Suguna C, Shanthi L (2015) Wound healing activity of a collagen-derived cryptic peptide. Amino Acids 47(2):317–328

    Article  Google Scholar 

  55. Banerjee P, Mehta C, Shanthi A (2014) Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen. Chem Biol Interact 211:1–10

    Article  Google Scholar 

  56. Clark RA, Wikner NE, Doherty DE et al (1988) Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J Biol Chem 263(24):12115–12123

    Google Scholar 

  57. Schor SL, Ellis I, Dolman C et al (1996) Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin. J Cell Sci 109(Pt 10):2581–2590

    Google Scholar 

  58. Homandberg GA, Williams JE, Grant D et al (1985) Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 120(3):327–332

    Google Scholar 

  59. You R, Zheng M, McKeown-Longo PJ (2010) The first type III repeat in fibronectin activates an inflammatory pathway in dermal fibroblasts. J Biol Chem 285(47):36255–36259

    Article  Google Scholar 

  60. Hocking DC, Kowalski K (2002) A cryptic fragment from fibronectin’s III1 module localizes to lipid rafts and stimulates cell growth and contractility. J Cell Biol 158(1):175–184

    Article  Google Scholar 

  61. Aumailley M, Gerl M, Sonnenberg A et al (1990) Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett 262(1):82–86

    Article  Google Scholar 

  62. Adair-Kirk TL, Atkinson JJ, Broekelmann TJ et al (2003) A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J Immunol 171(1):398–406

    Article  Google Scholar 

  63. Adair-Kirk TL, Atkinson JJ, Kelley DG et al (2005) A chemotactic peptide from laminin alpha 5 functions as a regulator of inflammatory immune responses via TNF alpha-mediated signaling. J Immunol 174(3):1621–1629

    Article  Google Scholar 

  64. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66(4):859–862

    Article  Google Scholar 

  65. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10(6):312–320

    Article  Google Scholar 

  66. Zou Y, Zhang Y (2012) Mechanical evaluation of decellularized porcine thoracic aorta. J Surg Res 175(2):359–368

    Article  Google Scholar 

  67. Keane TJ, Londono R, Carey RM et al (2013) Preparation and characterization of a biologic scaffold from esophageal mucosa. Biomaterials 34(28):6729–6737

    Article  Google Scholar 

  68. Faulk DM, Carruthers CA, Warner HJ et al (2014) The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater 10(1):183–193

    Article  Google Scholar 

  69. Marçal H, Ahmed T, Badylak SF et al (2012) A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder. Regen Med 7(2):159–166

    Article  Google Scholar 

  70. Gilbert TW (2012) Strategies for tissue and organ decellularization. J Cell Biochem 113(7):2217–2222

    Article  Google Scholar 

  71. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  Google Scholar 

  72. Keane TJ, Londono R, Turner NJ et al (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781

    Article  Google Scholar 

  73. Londono R, Badylak SF (2015) Factors which affect the host response to biomaterials. In: Badylak SF (ed) Host response to biomaterials: the impact of host response on biomaterial selection. Elsevier, New York

    Google Scholar 

  74. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14:643–651

    Article  Google Scholar 

  75. Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83(3):585–596

    Article  Google Scholar 

  76. Stachelek SJ, Finley MJ, Alferiev IS et al (2011) The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 32(19):4317–4326

    Article  Google Scholar 

  77. Finley MJ, Clark KA, Alferiev IS et al (2013) Intracellular signaling mechanisms associated with CD47 modified surfaces. Biomaterials 34(34):8640–8649

    Article  Google Scholar 

  78. Hinz B, Phan SH, Thannickal VJ et al (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355

    Article  Google Scholar 

  79. Klingberg F, Hinz ES, White B (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229(2):298–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Badylak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scarritt, M.E., Londono, R., Badylak, S.F. (2017). Host Response to Implanted Materials and Devices: An Overview. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_1

Download citation

Publish with us

Policies and ethics